首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. G. Beutel  A. Haas 《Zoomorphology》1998,118(2):103-116
 The head of third instar larvae of Hydroscapha natans was reconstructed three dimensionally on a computer. This technique allowed a detailed examination and presentation of internal features of a representative of the ’suborder’ Myxophaga, which is characterized by the very small size of the immature stages and adults. Larval character states of H. natans were compared with features found in other representatives of the Coleoptera. The monophyly of the Myxophaga (excluding Lepiceridae) is supported by several autapomorphies of the larval head: a broadened, transverse head, scale-like cuticular surface structures, round and flattened labral sensilla, short antennae with only two antennomeres, a ligula with papillae, and a broadened tentorial bridge. A monophylum comprising the Hydroscaphidae and Microsporidae is characterized by a very unusual semientognathous condition of the mouthparts and an unusual shape and large relative size of the brain. The last common ancestor of the Hydroscaphidae, Torridincolidae, and Microsporidae was probably living in hygropetric habitats. Several apomorphies have evolved in correlation with this peculiar life style. The very dense arrangement of muscles and other internal structures, and the unusual shape and size of the cerebrum have resulted from miniaturization. The overall complexity of the head is not reduced in comparison to larvae of other representatives of Coleoptera. A negative allometric relationship between body size and the size of the brain, and a correlation between brain size and the size of neurons was found in several species of Coleoptera examined. Accepted: 16 December 1997  相似文献   

2.
《Systematic Entomology》2018,43(4):777-797
Myxophaga are a small group of beetles, but phylogenetically crucial as one of the four coleopteran suborders. The monogeneric Sphaeriusidae, one of four myxophagan families, comprise about 20 species, most of them living in moist substrate at river edges. The morphology of the minute hemispherical adult is very insufficiently known. Consequently, we document external and internal head structures using scanning electron microscopy, microtome sections and three‐dimensional reconstructions. The results are discussed with respect to effects of miniaturization and also functional aspects, especially microphagous feeding habits. The head of Sphaerius is less affected by size reduction compared with other beetles of the same size class (e.g. larger Ptiliidae, Corylophidae). Features related to very small size are the absence of externally visible ridges and a partial shift of the brain into the prothorax. The cephalic musculature is apparently not affected. The feeding apparatus is similar to what is found in microphagous species of Polyphaga, especially in Scirtoidea and Staphyliniformia. However, in contrast to polyphagans with similar feeding habits, the hypopharyngeal longitudinal ridge (or process) of Sphaerius is strongly reduced and a fimbriate galea is lacking. The observed features are also evaluated in a cladistic analysis of larval and adult characters. The results are distinctly in conflict with branching patterns suggested by analyses of molecular data, but in agreement with previous morphological studies. In contrast to a pattern obtained in a recent molecular study – (Hydroscaphidae + (Torridincolidae + (Sphaeriusidae + Lepiceridae))) – our analyses yielded Lepiceridae as sister to the remaining Myxophaga (branch support 9), and Sphaerius as sister taxon of Hydroscaphidae (branch support 5). The monophyletic origin of the latter two taxa is supported by unusual synapomorphies of adults and larvae. Sphaerius is characterized by numerous autapomorphies of the head: a labro‐mandibular locking device, a bipartite M. frontoepipharyngalis (M9) with subcomponents oriented in the opposite direction, a deep antennal furrow, an intercalary antennomere with a structure resembling a sucking disc, a strongly elongated flagellomere 1, a compact three‐segmented antennal club, strong bundles of M. tentorioscapalis (M4) originating on the posterior head capsule, a concave anterior side of maxillary palpomere 2, and an elongated second pair of tormae posteriorly connected with a process of the hypopharyngeal suspensorium.  相似文献   

3.
4.
External and internal structures of the head of adults of Clambus are described and illustrated in detail. The results are compared with structural features found in the clambid genus Calyptomerus, in representatives of other scirtoid families, and also in species of other coleopteran suborders, notably Myxophaga. The results tentatively support the monophyly of Scirtoidea and a close relationship between Clambidae and Eucinetidae is suggested by one shared derived feature of the mandible, a long and slender apical tooth with a serrate edge. The monophyly of Clambidae is very strongly supported and Acalyptomerus is probably the sistergroup of a clade Calyptomerus + Clambinae. Potential scirtoid autapomorphies are the loss of the dorsal tentorial arms, a bulging gula, a strongly transverse labrum, and a ridge separating the mediostipes from the lacinia. However, all these features are homoplasious. The monophyly of Clambidae is supported by modifications of the head capsule which is strongly flattened and broadened, by a deep clypeofrontal incision enabling vertical antennal movements, and a series of antennal features. Synapomorphies of Clambinae + Calyptomerus (Clambidae excluding Acalyptomerus) are the conglobate body form with the ventral side of the head capsule in contact with the mesocoxae, and compound eyes integrated in the contour of the head. The completely subdivided eye is an autapomorphy of Clambus. An entire series of features is shared by Clambidae (or Scirtoidea) and Myxophaga. Most of them are apomorphies that apparently evolved independently in both groups. However, the presence of well‐developed maxillary and labial glands is arguably a retained groundplan feature of Coleoptera, with parallel loss in Archostemata, Adephaga and various groups of Polyphaga. J. Morphol. 277:615–633, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Phylogenetic Relationships of the Suborders of Coleoptera (Insecta)   总被引:8,自引:0,他引:8  
One hundred seven external and internal characters of larval and adult representatives of 28 genera of the coleopteran suborders were analyzed cladistically. Four groups of Neuropterida were introduced as outgroup. The analysis yielded 18 trees with a minimum of 194 steps (CI 0.691). All trees support the monophyly of all four suborders and a branching pattern (Archostemata + (Adephaga + (Myxophaga + Polyphaga))). The presence of elytra with meso- and metathoracic locking devices, the specific hind-wing folding, the close connection of exposed sclerites, the absence of the mera, the absence of eight thoracic muscles, the reduced abdominal sternite I, and the invagination of terminal segments are autapomorphies of Coleoptera. The monophyly of Coleoptera excl. Archostemata is supported by further transformations of the thoracic sclerites such as absence of the mesothoracic discriminal line and katepisternal joint, by an internalized or absent metathoracic trochantin, by the presence of a bending zone in the hind-wing, and by eight further muscle losses. Fusion of tibia and tarsus and presence of a single claw are larval synapomorphies of Myxophaga and Polyphaga. Adults are characterized by fusion of protrochantin and propleura and by the rigid connection of the meso- and metathoracic ventrites. The eucinetoid lineage of Polyphaga is characterized by the secondary absence of the bending zone of the alae. This results in a distinctly simplified wing folding mechanism. The monophyly of Cucujiformia (+ Bostrichoidea) is supported by the presence of cryptonephric Malpighian tubules. Transformations of fore-and hind-wings, reinforcement and simplification of the thoracic exoskeleton, and an efficient use of a distinctly reduced set of thoracic muscles play an important role in the early evolution of Coleoptera. Many different larval character transformations take place in the earlier Mesozoic within the suborders.  相似文献   

6.
Internal and external features of larvae of Nosodendron fasciculare were examined and compared to character states found in other groups of Derodontoidea and Bostrichoidea. Synapomorphic larval features indicate a sistergroup relationship between Nosodendridae and Derodontidae: tubercular surface structure, body compressed dorsoventrally, tergites with lateral projections, spiracles located on tubular processus. These families share three derived character states with Jacobsoniidae in one of two equally parsimonious trees. However, the monophyletic origin of Nosodendridae + Derodontidae + Jacobsoniidae is not sufficiently established at present. The monophyly of Bostrichoidea (Dermestidae + Bostrichidae + Anobiidae + Ptinidae) is suggested by hypognathism. Larvae of these families are characterized by the absence of the mandibular mola and a robust apical part of the mandible. The monophyly of Bostrichidae + Anobiidae + Ptinidae is indicated by a C-shaped, grub like body and the abdominal apex formed by an enlarged and rounded segment IX. Bostrychiformia are probably paraphyletic. A closer relationship between Bostrichoidea with Cucujiformia is suggested by the possession of cryptonephric malpighian tubules in adults. The specific type of cryptonephridism in Bostrichoidea is probably derived from this condition and is considered autapomorphic. The monophyly of Nosodendridae ( Nosodendron ) is supported by several autapomorphies. The assignment of the supposed larva of Nosodendron ovatum remains unclear. An inclusion of the dermestid genus Orphilus in Nosodendridae is rejected. Muscular features of larvae of Nosodendron (and Derodontus ) are largely plesiomorphic.  相似文献   

7.
8.
9.
The second-instar larva of the bot fly Gasterophilus nasalis (L.) (Diptera: Gasterophilidae) is described for the first time, based on scanning electron microscope (SEM) studies. On the pseudocephalum the larva bears an antenomaxillary sensory complex formed by the antenna (coeloconic sensilla) and the maxillary palp with a set of six coeloconic sensilla and four basiconica sensilla. The oral opening is latero-posteriorly limited by small spines, and exhibits strongly ornamented maxillae and mandibles. The thoracic and abdominal segments are circled by two bands, each with two rows (except the last segment that has one row) of backwardly pointed spines, and have cuticular depressions. Trichoid and campaniform sensilla surround the larval segments. The anterior spiracular opening is a small aperture. The terminal end of the eighth abdominal segment shows a spiracular cavity, lateral tubercles, eight basiconic and two trichoid sensilla. Each spiracular plate has two slightly curved slits, each with a serrated rima. There is a probable ecdysial scar. The findings of this ultrastructural study are compared with those other of larval flies.  相似文献   

10.
External and internal head structures of Nannochorista species were examined and described in detail. The characters are discussed with regard to their functional and phylogenetic implications. The structure of the mouthparts indicates that adults of Nannochorista feed on fluids. The loss of the mandibular muscles and the precerebral pharyngeal dilators are presumptive autapomorphies of the genus. A possible clade comprising Nannomecoptera, Siphonaptera and Diptera is supported by the presence of a labral food channel, the absence of the galea, a sheath for the paired mouthparts formed by the labium, very strongly developed labial palp muscles and cibarial dilators, and the presence of a well‐defined postcerebral pharyngeal pumping chamber. Closer affinities of Nannomecoptera with Diptera are suggested by the presence of a unique sensorial groove on the third maxillary palpomere. Further potential synapomorphies are the presence of a frontal apodeme and a primarily lamelliform mandible without teeth. The presence of a salivary channel on the laciniae and a subdivided labrum are shared derived features of Nannochorista and Siphonaptera. A derived condition present in Mecoptera including Boreidae but excluding Nannochoristidae is the secretion with a strongly developed intrinsic muscle of the salivary duct. The loss of the lateral labral retractor, the cranial muscle of the cardo, and of two of the three premental retractors, and the absence of transverse epipharyngeal muscles are potential autapomorphies of Antliophora. The formation of a maxillolabial complex is a possible synapomorphy of Hymenoptera and Mecopterida.  相似文献   

11.
Abstract. Sixty-nine characters of larval structure of twenty-eight genera of the supertribe Trechitae (Coleoptera: Carabidae) were analysed phylogenetically. The monophyly of Trechitae is strongly supported with five unique synapomorphies. The monophyly of Zolini + Bembidiini + Pogonini is supported with two synapomorphies. We propose that the tribe Trechini is a sister group to them and its monophyly is supported with two unique synapomorphies. The inferred branching pattern of Trechini genera is (Perileptus + Thalassophilus) + (Amblystogenium + (Trechimorphus + (Trechus + Epaphius + Aepopsis + Trechisibus))); Perileptus is a member of Trechodina rather than Trechina. The monophyly of Zolini is not supported. The monophyly of Pogonini is supported with two unique synapomorphies; its sister group relationships remain obscure; the branching pattern of pogonine genera is (((Pogonus + Pogonistes) + Cardiaderus) + Thalassotrechus). No evidence for monophyly of the tribe Bembidiini (s. lato; including subtribes Bembidiina, Tachyina, Xystosomina, and Anillina) was found. The relationships of Phrypeus are obscure; no evidence could be found linking it with Bembidiina. Without Phrypeus, Bembidiina might be a monophylum with a single synapomorphy. Sinechostictus branches basal of (Bembidion + Asaphidion) and therefore should be treated as a separate genus. Tachyina and Xystosomina form a monophylum based on two unique synapomorphies; a close relationship with a monophyletic Anillina is suggested. Reduction of the number of claws from two to one in Trechitae has taken place twice: within Trechina (Trechus, Epaphius, Aepopsis and Trechisibus) and in (Zolini + Bembidiini + Pogonini). The previously unknown larvae of the isolated genus Phrypeus are described and illustrated. A key to all twenty-eight analysed Trechitae genera based on characters of larvae and a list of larval autapomorphies for each genus are provided.  相似文献   

12.
13.
Abstract. Characters of the head of larvae of Metrius contractus Eschscholtz, Ozaenini and Paussini are interpreted phylogenetically. The monophyly of Metriini + Ozaenini + Paussini is substantiated by several synapomorphies such as hyperprognathism and strong constriction of the neck. Ozaenini and Paussini together form the sister-group of Metriini. Ozaenini are paraphyletic. The monophyly of Paussini + Ozaenini excluding Pachyteles is indicated by two possible synapomorphies. Several synapomorphies are shared by Physea + Paussini. Secondary prognathism, large membranous submento-mental area and other derived features are considered autapomorphies of Paussini. Paussini excluding Platyrhopalopsis are characterized by the loss of the palpifer. The monophyly of a group which comprises Geadephaga excluding Trachypachini is suggested by several synapomorphic features. A very basal position of the metriine—paussine lineage within Carabidae is indicated by several plesiomorphic features. A hypopharyngeal filter apparatus with a dense fringe of well-arranged, long hairs is a possible autapomorphy of Anisochaeta. The results of this study do not indicate a close relationship between the metriine—paussine lineage and the tribes Brachinini and Crepidogastrini as has been suggested in recent works.  相似文献   

14.
Phylogenetic relationships among three paraneopteran clades (Psocodea, Hemiptera and Thysanoptera) were analysed based on the morphology of forewing base structure. Monophyly of Paraneoptera was supported by nine autapomorphies, monophyly of Condylognatha (= Thysanoptera + Hemiptera) by two autapo‐ morphies, monophyly of Thysanoptera by five autapomorphies and monophyly of Hemiptera by one autapomorphy. Thus, (Psocodea + (Thysanoptera + Hemiptera)) were proposed to be the phylogenetic relationships within Paraneoptera. A homoplastic similarity of the third axillary sclerite was observed between Thysanoptera and Heteroptera, and a possible evolutionary factor providing this homoplasy was discussed. The present analysis also suggested a monophyletic Auchenorrhyncha, and reduction of the proximal median plate was considered as an autapomorphy of this clade.  相似文献   

15.
External and internal head structures of adults of Orchymontiinae, Prosthetopinae, Hydraeninae and Ochthebiinae were studied and those of Ochthebius semisericeus and Limnebius truncatellus are described in detail. The results are evaluated with respect to their relevance for a reconstruction of hydraenid phylogeny and also compared with structural features found in adults of other staphyliniform families. The monophyly of Hydraenidae is supported by the presence of a plate‐like, trilobed premento‐hypopharyngeal extension, an unusual origin of m. tentoriohypopharyngalis, dorsal tentorial arms firmly fused with the head capsule, modified basal antennomeres, and palpigers connected by a transverse sclerotized bar. Orchymontiinae are monophyletic and the basal sister group of the remaining Hydraenidae. The presence of a ventral transverse genal bulge and of a pubescent antennal club with more than two antennomeres (reversal in some prosthetopines: e.g. Mesoceration abstrictum) are possible apomorphies of Hydraenidae excluding Orchymontiinae. Prosthetopinae are probably monophyletic and the sister group of Ochthebiinae + Hydraeninae. The latter clade is characterized by a distinct cupula formed by antennomere VI, a loose five‐segmented pubescent antennal club, and a modified antennal musculature. The presence of an unusual tentorio‐pharyngeal dilator is a shared derived feature of Ochthebiinae and the genus Davidraena. The monophyly of Ochthebiinae was confirmed and Ochtheosus is the sister group of the remaining ochthebiine genera, which are characterized by a perforated wall‐like structure formed by the posterior tentorial arms. The absence of this tentorial modification and the fimbriate galea are plesiomorphies retained in Ochtheosus. Calobius differs strongly from other subgenera of Ochthebius and a generic status may be appropriate. The monophyly of Hydraeninae is not supported. Hydraena was confirmed as a clade and Laeliaena and Limnebius are sister groups. The latter genus is characterized by several autapomorphies. The basal position of Orchymontiinae and Prosthetopinae suggests a Gondwanan origin of Hydraenidae and a primary preference for life in running water. Important evolutionary changes of head structures are complex transformations of the antennae and related structures. Yet, the use of the antennae as accessory breathing organs is not a groundplan feature of the family. The results of this study strengthen the case of staphylinoid affinities of Hydraenidae.  相似文献   

16.
Abstract. Characters of the head of adephagan larvae were examined and analysed phylogenetically. A labrum which is completely fused to the clypeofrons and the presence of a closed prepharyngeal tube are autapomorphies of Adephaga. Partial reduction of the fossa maxillaris, cardo and stipes forming a functional unit, the immobilization of the lacinia, attachment of M. craniolacinialis to the lateral stipital wall, and loss of one stipitopalpal muscle, are considered autapomorphies of Adephaga excluding Gyrinidae. Complete reduction of the fossa maxillaris and the presence of M. craniostipitalis medialis are possible autapomorphies of Adephaga excluding Gyrinidae and Haliplidae. The presence of caudal tentorial arms, insertion of the galea on the mesal side of palpomere I, and absence of the lacinia are considered synapomorphies of Trachypachidae and Dytiscoidea (Noteridae, Amphizoidae, Hygrobiidae, Dytiscidae). The presence of a slender, elongated process of the head capsule, which articulates with a corresponding socket of the cardo, is a possible autapomorphy of Dytiscoidea. The sinuate frontal sutures, distinctly protruding prementum, shortened M. craniostipitalis medialis, and absence of M. submentopraementalis are considered autapomorphies of Geadephaga excluding Trachypachidae. The presence of a regular row of hairs along the anterior hypopharyngeal margin is a possible autapomorphy of Geadephaga excluding Trachypachidae and Rhysodidae. Improvement of the hypopharyngeal filter apparatus suggests the monophyly of Anisochaeta. Presence of a penicillum and partial reduction of the lacinia are possible autapomorphies of Anisochaeta excluding Omophronini. Larvae of Cychrini, Carabini, Nebriini and Notiophilini are characterized by a strongly developed, cone-shaped hypodon. Postocular and cervical ridges, crosswise arrangement of antennal muscles, and a completely flattened hypopharynx are considered autapomorphies of Caraboidea Limbata.  相似文献   

17.
The Coleoptera provides an excellent example of the value of fossils for understanding the evolutionary patterns of recent lineages. We reevaluate the morphology of the Early Permian †Tshekardocoleidae to test alternative phylogenetic hypotheses relating to the Palaeozoic evolution of the order. We discuss prior interpretations and revise an earlier data matrix. Both Bayesian and parsimony analyses support the monophyly of Coleoptera excluding †Tshekardocoleidae (= Mesocoleoptera), and of Coleoptera excluding †Tshekardocoleidae and †Permocupedidae (= Metacoleoptera). Plesiomorphies preserved in †Tshekardocoleidae are elytra, which rest over the body in a loose tent-like manner, with flat lateral flanges, projecting beyond the abdominal apex, and abdomens that are flexible and nearly cylindrical. Apomorphies of Mesocoleoptera include shortening of the elytra and a closer fit with the flattened and probably more rigid abdomen. A crucial synapomorphy of Metacoleoptera is the tightly sealed subelytral space, which may have been advantageous during the Permian aridification. Taxon exclusion experiments show that †Tshekardocoleidae is crucial for understanding the early evolution of Coleoptera and that its omission strongly affects ancestral state polarities as well as topology, including crown-group taxa. By constraining the relationships of extant taxa to match those supported by phylogenomic analysis, we demonstrate that features shared by Archostemata with Permian stem groups are most reasonably supported as plesiomorphic and that the smooth and simplified body forms of Polyphaga, Adephaga, Myxophaga, and Micromalthidae were derived in parallel. Our study highlights the reciprocal illumination of molecular, morphological, and paleontological data, and paves the way for tip-dating analysis across the order.  相似文献   

18.
The phylogenetic relationships of the family Congiopodidae are inferred based on morphological characters. The monophyly of this family is supported by 13 unambiguous apomorphic characters, including four autapomorphies among the superfamily Scorpaenoidea. The Congiopodidae shares 26 apomorphic characters with other scorpaenoid taxa, and these characters are considered to also support the monophyly of the family. Upon completion of the phylogenetic analysis using the characters in 39 transformation series, it was assumed that the family is unambiguously supported by five characters (and also by three and one characters when ACCTRAN and DELTRAN are used, respectively) and is branched into two major clades, including Congiopodus and Alertichthys plus Zanclorhynchus, respectively. Based on the phylogenetic relationships, a new classification, recognizing two subfamilies (Congiopodinae and Zanclorhynchinae) in the family Congiopodidae, is proposed. The genus Perryena, that was recently inferred being closely related to the Tetrarogidae (although many authors included it in the Congiopodidae), is provisionally placed into the Congiopodidae as incertae sedis.  相似文献   

19.
Abstract.  Fifty-four genera of the bee family Apidae comprising almost all tribes were analysed based on 77 traditional and one new character of the mature larvae. Nine, especially cleptoparasitic species, were newly added. Analyses were performed by maximum parsimony and Bayesian inference. Trees inferred from the analysis of the complete dataset were rooted by taxa from the families Melittidae and Megachilidae. Unrooted trees inferred from the analysis of the partial dataset (excluding outgroup taxa) are also presented to preclude possible negative effects of the outgroup on the topology of the ingroup. Only the subfamily Nomadinae was statistically well supported. The monophyly of the subfamilies Xylocopinae and Apinae was not topologically recovered. The monophyly of the tribe Tetrapediini was supported, and this tribe was found to be related to xylocopine taxa. At the very least, larval morphology suggests that Tetrapedia is not a member of the subfamily Apinae. Our analyses support the monophyly of the Eucerine line (Emphorini, Eucerini, Exomalopsini, Tapinotaspidini) and of the Apine line (Anthophorini, Apini, Bombini, Centridini, Euglossini, Meliponini). All analyses support the monophyly of totally cleptoparasitic tribes of the subfamily Apinae. We named this group the Melectine line (Ericrocidini, Isepeolini, Melectini, Osirini, Protepeolini, Rhathymini). In previous studies all these cleptoparasitic tribes were considered independent evolutionary lineages. Our results suggest that their similarities with hosts in morphology and pattern are probably the result of convergence and host–parasite co-evolution than phylogenetic affinity. According to the present analysis, the cleptoparasitism has evolved independently only six times within the family Apidae.  相似文献   

20.
An adult male of a newly discovered strepsipteran species from Brazil— Bahiaxenos relictus— is described. A new family Bahiaxenidae is suggested based on cladistic analyses of comprehensive morphological data sets with a broad taxon sampling including the stem group. It is unambiguously placed as the sister group of all other extant families of Strepsiptera. Bahiaxenos relictus is the only species of basal, i.e. non-stylopidian, Strepsiptera occurring in the New World. It appears to be a relict taxon that has survived in the fossil sand dunes of the São Francisco River (Bahia State). The loss of the 8th antennomere and the greatly reduced labrum are autapomorphies of Strepsiptera s.s . excluding Bahiaxenidae. The sister group relationship between†Protoxenidae and the remaining Strepsiptera, and between † Cretostylops and a clade comprising † Mengea and Strepsiptera s.s. , is confirmed, as is the monophyly of Stylopidia and Stylopiformia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号