首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinases play a critical role in the integration of signaling networks in eukaryotic cells. cAMP-dependent protein kinase (PKA) serves as a prototype for this large and highly diverse enzyme family. The catalytic subunit of PKA provides the best example of how a protein kinase recognizes its substrates, as well as inhibitors, and also show how the enzyme moves through the steps of catalysis. Many of the relevant conformational states associated with the catalytic cycle which have been captured in a crystal lattice are summarized here. From these structures, we can begin to appreciate the molecular events of catalysis as well as the intricate orchestration of critical residues in the catalytic subunit that contribute to catalysis. The entire molecule participates. To fully understand signaling by PKA, however, requires an understanding of a large set of related proteins, not just the catalytic subunit. This includes the regulatory subunits that serve as receptors for cAMP and the A kinase anchoring proteins (AKAPs) that serve as scaffolds for PKA. The AKAPs localize PKA to specific sites in the cell by docking to the N-terminus of the regulatory subunits, thus creating microenvironments for PKA signaling. To fully appreciate the diversity and integration of these molecules, one needs not only high-resolution structures but also an appreciation of how these molecules behave in solution. Thus, in addition to obtaining high-resolution structures by X-ray crystallography and NMR, we have used fluorescent tools and also hydrogen/deuterium exchange coupled with mass spectrometry to probe the dynamic properties of these proteins and how they interact with one another. The molecular features of these molecules are described. Finally, we describe a new recombinantly expressed PKA reporter that allows us to monitor PKA activity in living cells.  相似文献   

2.
The regulatory subunits of cAMP‐dependent protein kinase (PKA) are the major receptors of cAMP in most eukaryotic cells. As the cyclic nucleotide binding (CNB) domains release cAMP and bind to the catalytic subunit of PKA, they undergo a major conformational change. The change is mediated by the B/C helix in CNB‐A, which extends into one long helix that now separates the two CNB domains and docks onto the surface of the catalytic subunit. We explore here the role of three key residues on the B/C helix that dock onto the catalytic subunit, Arg226, Leu233, and Met 234. By replacing each residue with Ala, we show that each contributes significantly to creating the R:C interface. By also deleting the second CNB domain (CNB‐B), we show furthermore that CNB‐B is a critical part of the cAMP‐induced conformational switch that dislodges the B/C helix from the surface of the catalytic subunit. Without CNB‐B the Ka for activation by cAMP increases from 80 to 1000 nM. Replacing any of the key interface residues with Ala reduces the Ka to 25–40 nM. Leu233 and M234 contribute to a hydrophobic latch that binds the B/C helix onto the large lobe of the C‐subunit, while Arg226 is part of an electrostatic switch that couples the B/C helix to the phosphate binding cassette where the cAMP docks.  相似文献   

3.
Regulation of protein kinase A (PKA) by binding of cAMP to the regulatory subunit and the resulting release of the active catalytic subunit is a very well established mechanism of kinase activation. We have shown recently that PKA in budding yeast is also subject to an additional level of regulation that that modulates its activity in response to nutrient availability. Nutrient regulation of PKA activity requires a pair of proteins, Gpb1 and Gpb2, that contain several kelch repeats, a sequence motif that predicts that they fold into a β-propeller structure. The regulatory process mediated by Gpb1 and Gpb2 causes an increase in the stability and phosphorylation of the PKA regulatory subunit Bcy1 in response to low extracellular glucose concentrations. Phosphorylation of serine-145 of Bcy1 controls its stability, and other phosphorylation events at the cluster of serines at positions 74-84 correlate with changes in nutrient availability. Here we present data consistent with a model in which the effects of Gpb1 and Gpb2 on Bcy1 are an indirect consequence of their primary effects on the PKA catalytic subunits.  相似文献   

4.
When the J-domain of the heat shock protein DnaJB1 is fused to the catalytic (C) subunit of cAMP-dependent protein kinase (PKA), replacing exon 1, this fusion protein, J-C subunit (J-C), becomes the driver of fibrolamellar hepatocellular carcinoma (FL-HCC). Here, we use cryo-electron microscopy (cryo-EM) to characterize J-C bound to RIIβ, the major PKA regulatory (R) subunit in liver, thus reporting the first cryo-EM structure of any PKA holoenzyme. We report several differences in both structure and dynamics that could not be captured by the conventional crystallography approaches used to obtain prior structures. Most striking is the asymmetry caused by the absence of the second cyclic nucleotide binding (CNB) domain and the J-domain in one of the RIIβ:J-C protomers. Using molecular dynamics (MD) simulations, we discovered that this asymmetry is already present in the wild-type (WT) RIIβ2C2 but had been masked in the previous crystal structure. This asymmetry may link to the intrinsic allosteric regulation of all PKA holoenzymes and could also explain why most disease mutations in PKA regulatory subunits are dominant negative. The cryo-EM structure, combined with small-angle X-ray scattering (SAXS), also allowed us to predict the general position of the Dimerization/Docking (D/D) domain, which is essential for localization and interacting with membrane-anchored A-Kinase-Anchoring Proteins (AKAPs). This position provides a multivalent mechanism for interaction of the RIIβ holoenzyme with membranes and would be perturbed in the oncogenic fusion protein. The J-domain also alters several biochemical properties of the RIIβ holoenzyme: It is easier to activate with cAMP, and the cooperativity is reduced. These results provide new insights into how the finely tuned allosteric PKA signaling network is disrupted by the oncogenic J-C subunit, ultimately leading to the development of FL-HCC.

When part of the heat shock protein DnaJB1 is fused to the catalytic subunit of cAMP-dependent protein kinase (PKA), this fusion protein drives the development of fibrolamellar hepatocellular carcinoma. This study of the asymmetric structure and dynamics of the PKA RIIβ holoenzyme with the oncogenic DnaJB1-PKAc fusion protein reveals disrupted PKA allostery.  相似文献   

5.
Cyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C-subunit are also unknown. Here we report molecular-dynamics simulations and mutational studies of the RIalpha R-subunit that identify the C-helix as a highly dynamic switch which relays cAMP binding to the helical C-subunit binding regions. Furthermore, we identify an important salt bridge which links cAMP binding directly to the C-helix that is necessary for normal activation. Additional mutations show that a hydrophobic "hinge" region is not as critical for the cross-talk in PKA as it is in the homologous EPAC protein, illustrating how cAMP can control diverse functions using the evolutionarily conserved cAMP-binding domains.  相似文献   

6.
Regulation of protein kinase A (PKA) by binding of cAMP to the regulatory subunit and the resulting release of the active catalytic subunit is a very well established mechanism of kinase activation. We have shown recently that PKA in budding yeast is also subject to an additional level of regulation that that modulates its activity in response to nutrient availability. Nutrient regulation of PKA activity requires a pair of proteins, Gpb1 and Gpb2, that contain several kelch repeats, a sequence motif that predicts that they fold into a β-propeller structure. The regulatory process mediated by Gpb1 and Gpb2 causes an increase in the stability and phosphorylation of the PKA regulatory subunit Bcy1 in response to low extracellular glucose concentrations. Phosphorylation of serine-145 of Bcy1 controls its stability, and other phosphorylation events at the cluster of serines at positions 74–84 correlate with changes in nutrient availability. Here we present data consistent with a model in which the effects of Gpb1 and Gpb2 on Bcy1 are an indirect consequence of their primary effects on the PKA catalytic subunits.Key words: protein kinase A, kelch repeat proteins, nutritional signaling, Saccharomyces cerevisiae  相似文献   

7.
Centrosomes orchestrate microtubule nucleation and spindle assembly during cell division [1,2] and have long been recognized as major anchoring sites for cAMP-dependent protein kinase (PKA) [3,4]. Subcellular compartmentalization of PKA is achieved through the association of the PKA holoenzyme with A-kinase anchoring proteins (AKAPs) [5,6]. AKAPs have been shown to contain a conserved helical motif, responsible for binding to the type II regulatory subunit (RII) of PKA, and a specific targeting motif unique to each anchoring protein that directs the kinase to specific intracellular locations. Here, we show that pericentrin, an integral component of the pericentriolar matrix of the centrosome that has been shown to regulate centrosome assembly and organization, directly interacts with PKA through a newly identified binding domain. We demonstrate that both RII and the catalytic subunit of PKA coimmunoprecipitate with pericentrin isolated from HEK-293 cell extracts and that PKA catalytic activity is enriched in pericentrin immunoprecipitates. The interaction of pericentrin with RII is mediated through a binding domain of 100 amino acids which does not exhibit the structural characteristics of similar regions on conventional AKAPs. Collectively, these results provide strong evidence that pericentrin is an AKAP in vivo.  相似文献   

8.
The regulation of the activity of kinases and phosphatases is an essential aspect of intracellular signal transduction. Recently determined structures of AGC protein kinases, including isoforms of PKB, PKC, GRK and ROCK, indicate that occupancy of a hydrophobic pocket in the kinase N-lobe by a segment of the protein immediately C terminal to the kinase domain provides a mechanism for regulating kinase activity. In addition, crystal structures of Aurora-A and Aurora-B, which are closely related to AGC family kinases, in complex with their activators, TPX2 and INCENP, respectively, show how allosteric kinase activation is achieved by the binding of the activator protein to an equivalent hydrophobic pocket. Hence, regulation of kinase activity by analogous interactions is a shared regulatory mechanism of these kinases. Two crystal structures have explained the molecular basis of PKA anchoring through its regulatory subunits by members of the AKAP family of scaffold proteins. AKAPs can also interact directly with protein kinase and phosphatase catalytic domains. The crystal structure of the PP1 catalytic subunit in complex with the targeting subunit MYPT1 indicates that there is also scope for intimate phosphatase regulation by scaffold proteins.  相似文献   

9.
The catalytic and regulatory subunits of cAMP-dependent protein kinase (PKA) are highly dynamic signaling proteins. In its dissociated state the catalytic subunit opens and closes as it moves through its catalytic cycle. In this subunit, the core that is shared by all members of the protein kinase family is flanked by N- and C-terminal segments. Each are anchored firmly to the core by well-defined motifs and serve to stabilize the core. Protein kinases are not only catalysts, they are also scaffolds. One of their major functions is to bind to other proteins. In addition to its interactions with the N- and C- termini, the catalytic subunit interacts with its inhibitor proteins, PKI and the regulatory subunits. Both bind with subnanomolar affinity. To achieve this tight binding requires docking of a substrate mimetic to the active site cleft as well as a peripheral docking site. The peripheral site used by PKI is distinct from that used by RIalpha as revealed by a recent structure of a C:RIalpha complex. Upon binding to the catalytic subunit, the linker region of RIalpha becomes ordered. In addition, cAMP-binding domain A undergoes major conformational changes. RIalpha is a highly malleable protein. Using small angle X-ray scattering, the overall shape of the regulatory subunits and corresponding holoenzymes have been elucidated. These studies reveal striking and surprising isoform differences.  相似文献   

10.
Yu S  Mei FC  Lee JC  Cheng X 《Biochemistry》2004,43(7):1908-1920
Although individual structures of cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits have been determined at the atomic level, our understanding of the effects of cAMP activation on protein dynamics and intersubunit communication of PKA holoenzymes is very limited. To delineate the mechanism of PKA activation and structural differences between type I and II PKA holoenzymes, the conformation and structural dynamics of PKA holoenzymes Ialpha and IIbeta were probed by amide hydrogen-deuterium exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and chemical protein footprinting. Binding of cAMP to PKA holoenzymes Ialpha and IIbeta leads to a downshift in the wavenumber for both the alpha-helix and beta-strand bands, suggesting that R and C subunits become overall more dynamic in the holoenzyme complexes. This is consistent with the H-D exchange results showing a small change in the overall rate of exchange in response to the binding of cAMP to both PKA holoenzymes Ialpha and IIbeta. Despite the overall similarity, significant differences in the change of FT-IR spectra in response to the binding of cAMP were observed between PKA holoenzymes Ialpha and IIbeta. Activation of PKA holoenzyme Ialpha led to more conformational changes in beta-strand structures, while cAMP induced more apparent changes in the alpha-helical structures in PKA holoenzyme IIbeta. Chemical protein footprinting experiments revealed an extended docking surface for the R subunits on the C subunit. Although the overall subunit interfaces appeared to be similar for PKA holoenzymes Ialpha and IIbeta, a region around the active site cleft of the C subunit was more protected in PKA holoenzyme Ialpha than in PKA holoenzyme IIbeta. These results suggest that the C subunit assumes a more open conformation in PKA holoenzyme IIbeta. In addition, the chemical cleavage patterns around the active site cleft of the C subunit were distinctly different in PKA holoenzymes Ialpha and IIbeta even in the presence of cAMP. These observations provide direct evidence that the R subunits may be partially associated with the C subunit with the pseudosubstrate sequence docked in the active site cleft in the presence of cAMP.  相似文献   

11.
The first protein kinase structure, solved in 1991, revealed the fold that is shared by all members of the eukaryotic protein kinase superfamily and showed how the conserved sequence motifs cluster mostly around the active site. This structure of the PKA catalytic (C) subunit showed also how a single phosphate integrated the entire molecule. Since then the EPKs have become a major drug target, second only to the G-protein coupled receptors. Although PKA provided a mechanistic understanding of catalysis that continues to serve as a prototype for the family, by comparing many active and inactive kinases we subsequently discovered a hydrophobic spine architecture that is a characteristic feature of all active kinases. The ways in which the regulatory spine is dynamically assembled is the defining feature of each protein kinase. Protein kinases have thus evolved to be molecular switches, like the G-proteins, and unlike metabolic enzymes which have evolved to be efficient catalysis. PKA also shows how the dynamic tails surround the core and serve as essential regulatory elements. The phosphorylation sites in PKA, introduced both co- and post-translationally, are very stable. The resulting C-subunit is then packaged as an inhibited holoenzyme with cAMP-binding regulatory (R) subunits so that PKA activity is regulated exclusively by cAMP, not by the dynamic turnover of an activation loop phosphate. We could not understand activation and inhibition without seeing structures of R:C complexes; however, to appreciate the structural uniqueness of each R2:C2 holoenzyme required solving structures of tetrameric holoenzymes. It is these tetrameric holoenzymes that are localized to discrete sites in the cell, typically by A Kinase Anchoring Proteins where they create discrete foci for PKA signaling. Understanding these dynamic macromolecular complexes is the challenge that we now face. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

12.
Although RII protein kinase A (PKA) regulatory subunits are constitutively localized to discrete cellular compartments through binding to A-kinase-anchoring proteins (AKAPs), RI subunits are primarily diffuse in the cytoplasm. In this paper, we report a novel AKAP-dependent localization of RIα to distinct organelles, specifically, multivesicular bodies (MVBs). This localization depends on binding to AKAP11, which binds tightly to free RIα or RIα in complex with catalytic subunit (holoenzyme). However, recruitment to MVBs occurs only with the release of PKA catalytic subunit (PKAc). This recruitment is reversed by reassociation with PKAc, and it is disrupted by the presence of AKAP peptides, mutations in the RIα AKAP-binding site, or knockdown of AKAP11. Cyclic adenosine monophosphate binding not only unleashes active PKAc but also leads to the targeting of AKAP11:RIα to MVBs. Therefore, we show that the RIα holoenzyme is part of a signaling complex with AKAP11, in which AKAP11 may direct RIα functionality after disassociation from PKAc. This model defines a new paradigm for PKA signaling.  相似文献   

13.
Protein kinase A (PKA), also known as cAMP dependent protein kinase, is an essential component of many signaling pathways, many of which regulate key developmental processes. Inactive PKA is a tetrameric holoenzyme, comprised of two catalytic (PRKAC), and two regulatory subunits. Upon cAMP binding, the catalytic subunits are released and thereby activated. There are multiple isoforms of PKA catalytic subunits, but their individual roles are not well understood. In order to begin studying their roles in zebrafish development, it is first necessary to identify the spatial and temporal expression profiles for each prkac subunit. Here we evaluate the expression profiles for the four zebrafish prkacs: prkacαa, αb, βa, and βb, at key developmental time points: 24, 48 and 72 h post fertilization. We show that zebrafish prkacs are expressed throughout the developing nervous system, each showing unique expression patterns. This body of work will inform future functional studies into the roles of PKA during development.  相似文献   

14.
Catecholamines in adipose tissue promote lipolysis via cAMP, whereas insulin stimulates lipogenesis. Here we show that H(2)O(2) generated by insulin in rat adipocytes impaired cAMP-mediated amplification cascade of lipolysis. These micromolar concentrations of H(2)O(2) added before cAMP suppressed cAMP activation of type IIbeta cyclic AMP-dependent protein kinase (PKA) holoenzyme, prevented hormone-sensitive lipase translocation from cytosol to storage droplets, and inhibited lipolysis. Similarly, H(2)O(2) impaired activation of type IIalpha PKA holoenzyme from bovine heart and from that reconstituted with regulatory IIalpha and catalytic alpha subunits. H(2)O(2) was ineffective (a) if these PKA holoenzymes were preincubated with cAMP, (b) if added to the catalytic alpha subunit, which is active independently of cAMP activation, and (c) if the catalytic alpha subunit was substituted by its C199A mutant in the reconstituted holoenzyme. H(2)O(2) inhibition of PKA activation remained after H(2)O(2) elimination by gel filtration but was reverted with dithiothreitol or with thioredoxin reductase plus thioredoxin. Electrophoresis of holoenzyme in SDS gels showed separation of catalytic and regulatory subunits after cAMP incubation but a single band after H(2)O(2) incubation. These data strongly suggest that H(2)O(2) promotes the formation of an intersubunit disulfide bond, impairing cAMP-dependent PKA activation. Phylogenetic analysis showed that Cys-97 is conserved only in type II regulatory subunits and not in type I regulatory subunits; hence, the redox regulation mechanism described is restricted to type II PKA-expressing tissues. In conclusion, phylogenetic analysis results, selective chemical behavior, and the privileged position in holoenzyme lead us to suggest that Cys-97 in regulatory IIalpha or IIbeta subunits is the residue forming the disulfide bond with Cys-199 in the PKA catalytic alpha subunit. A new molecular point for cross-talk among heterologous signal transduction pathways is demonstrated.  相似文献   

15.
Two isoforms of regulatory (R) subunit of cAMP-dependent protein kinase (PKA), named R(myt1) and R(myt2), were identified so far in the sea mussel Mytilus galloprovincialis. Out of them, only R(myt2) was phosphorylated in vitro by casein kinase 2 (CK2) using GTP as phosphate donor. CK2 catalytic subunit (CK2alpha) itself was sufficient to phosphorylate R(myt2), but phosphorylation was enhanced by the presence of the regulatory subunit CK2beta. Even in the absence of CK2, R(myt2) was phosphorylated to a certain extent when it was incubated with GTP. This basal phosphorylation was partially abolished by the known inhibitors apigenin and emodin, which suggests the presence of a residual amount of endogenous CK2 in the preparation of purified R subunit. CK2-mediated phosphorylation significantly decreases the ability of R(myt2) to inhibit PKA catalytic (C) subunit activity in the absence of cAMP. On the other hand, the sequence of several peptides obtained from the tryptic digestion of R(myt2) showed that mussel protein contains the signature sequence common to all PKA family members, within the "phosphate binding cassette" (PBC) A and B. Moreover, the degree of identity between the sequences of peptides from R(myt2), as a whole, and those from type II R subunits was 68-75%, but the global identity percentage with type I R subunits was only about 30%, so that R(myt2) can be classified as a type II R subunit.  相似文献   

16.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.  相似文献   

17.
Impaired cognition and memory may be associated with down-regulation of cAMP-response element-binding protein (CREB) in the brain in patients with Alzheimer disease, but the molecular mechanism leading to the down-regulation is not understood. In this study, we found a selective reduction in the levels of the regulatory subunits (RIIα and RIIβ) and the catalytic subunit (Cβ) as well as the enzymatic activity of cAMP-dependent protein kinase (PKA), which is the major positive regulator of CREB. We also observed that PKA subunits were proteolyzed by calpain and the levels of PKA subunits correlated negatively with calpain activation in the human brain. These findings led us to propose that in the brain in patients with Alzheimer disease, over-activation of calpain because of calcium dysregulation causes increased degradation and thus decreased activity of PKA, which, in turn, contributes to down-regulation of CREB and impaired cognition and memory.  相似文献   

18.
Fluorescence intensity and anisotropy measurements using the fluorescent adenosine cyclic 3',5'-phosphate (cAMP) analogue 1,N6-ethenoadenosine cyclic 3',5'-phosphate (epsilon-cAMP) are sensitive to the dissociation of epsilon-cAMP which occurs when either the type I or the type II regulatory subunit (RI or RII) of cAMP-dependent protein kinase associates with the catalytic subunit. Studies using epsilon-cAMP show that MgATP has opposite effects on the reconstitution of both types of protein kinase: MgATP strongly stabilizes the type I holoenzyme while it slightly destabilizes the type II holoenzyme. The synthetic substrate Kemptide has a small inhibitory effect on the reconstitution of both holoenzymes when tested at 10 microM concentration. The protein kinase inhibitor has a larger effect which is especially pronounced in the reassociation of the type I enzyme. The diminished relative ability of the type I regulatory subunit to compete with the protein kinase inhibitor suggests that the combined effects of the two opposing equilibria (epsilon-cAMP and catalytic subunit binding) are different for the two types of regulatory subunits. Displacement experiments show that cAMP and epsilon-cAMP bind about equally well to the type I subunit. Slow conformational changes accompanying the binding of epsilon-cAMP by both regulatory subunits are greatly accelerated with the holoenzymes, suggesting that dissociation of the holoenzymes occurs via ternary complexes. The time courses of epsilon-cAMP binding also show the heterogeneity of binding characteristics of RII. The 37 000-dalton fragment of type II subunit retains the epsilon-cAMP binding properties of the native subunit. However, only a fraction of the fragment preparation (approximately 32% estimated from sedimentation measurements) binds the catalytic subunit well, suggesting heterogeneity of cleavage.  相似文献   

19.
A cyclic AMP dependent protein kinase (PKA), its regulatory (R) and catalytic (C) subunits were purified to homogeneity from soluble extract of Microsporum gypseum. Purified enzyme showed a final specific activity of 277.9 nmol phosphate transferred min(-1) mg protein(-1) with kemptide as substrate. The enzyme preparation showed two bands with molecular masses of 76 kDa and 45 kDa on sodium dodecyl polyacrylamide gel electrophoresis. The 76 kDa subunit was found to be the regulatory (R) subunit of PKA holoenzyme as determined by its immunoreactivity and the isoelectric point of this subunit was 3.98. The 45 kDa subunit was found to be the catalytic (C) subunit by its immunoreactivity and phosphotransferase activity. Gel filtration using Sepharose CL-6B revealed the molecular mass of PKA holoenzyme to be 240 kDa, compatible with its tetrameric structure, consisting of two regulatory subunits (76 kDa) and two catalytic subunits (45 kDa). The specificity of enzyme towards protein acceptors in decreasing order of phosphorylation was found to be kemptide, casein, syntide and histone IIs. Purified enzyme had apparent K(m) values of 71 microM and 25 microM for ATP and kemptide, respectively. Phosphorylation was strongly inhibited by mammalian PKA inhibitor (PKI) but not by inhibitors of other protein kinases. The PKA showed maximum activity at pH 7.0 and enzyme activity was inhibited in the presence of N-ethylmaleimide (NEM) which shows the involvement of sulfhydryl groups for the activity of PKA. PKA phosphorylated a number of endogenous proteins suggesting the multifunctional role of cAMP dependent protein kinase in M. gypseum. Further work is under progress to identify the natural substrates of this enzyme through which it may regulate the enzymes involved in phospholipid metabolism.  相似文献   

20.
The genes PRKACA and PRKACB encode the principal catalytic (C) subunits of protein kinase A (PKA) Cα and Cβ, respectively. Cα is expressed in all eukaryotic tissues examined and studies of Cα knockout mice demonstrate a crucial role for Cα in normal physiology. We have sequenced exon 2 through 10 of PRKACA from the genome of 498 Norwegian donors and extracted information about PRKACA mutations from public databases. We identified four interesting nonsynonymous point mutations, Arg45Gln, Ser109Pro, Gly186Val, and Ser263Cys, in the Cα1 splice variant of the kinase. Cα variants harboring the different amino acid mutations were analyzed for kinase activity and regulatory (R) subunit binding. Whereas mutation of residues 45 and 263 did not alter catalytic activity or R subunit binding, mutation of Ser(109) significantly reduced kinase activity while R subunit binding was unaltered. Mutation of Cα Gly(186) completely abrogated kinase activity and PKA type I but not type II holoenzyme formation. Gly(186) is located in the highly conserved DFG motif of Cα and mutation of this residue to Val was predicted to result in loss of binding of ATP and Mg(2+), which may explain the kinetic inactivity. We hypothesize that individuals born with mutations of Ser(109) or Gly(186) may be faced with abnormal development and possibly severe disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号