首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Near-UV difference spectral analysis of the triplex formed from d(C-T)6 and d(A-G)6.d(C-T)6 in neutral and acidic solution shows that the third strand dC residues are protonated at pH 7.0, far above their intrinsic pKa. Additional support for ion-dipole interactions between the third strand dC residues and the G.C target base pairs comes from reduced positive dependence of triplet stability on ionic strength below 0.9 M Na+, inverse dependence above 0.9 M Na+ and strong positive dependence on hydrogen ion concentration. Molecular modeling (AMBER) of C:G.C and C+:G.C base triplets with the third strand base bound in the Hoogsteen geometry shows that only the C+:G.C triplet is energetically feasible. van't Hoff analysis of the melting of the triplex and target duplex shows that between pH 5.0 and 8.5 in 0.15 M NaCl/0.005 M MgCl2 the enthalpy of melting (delta H degree obs) varies from 5.7 to 6.6 kcal.mol-1 for the duplex in a duplex mixture and from 7.3 to 9.7 kcal.mol-1 for third strand dissociation in the triplex mixture. We have extended the condensation-screening theory of Manning to pH-dependent third strand binding. In this development we explicitly include the H+ contribution to the electrostatic free energy and obtain [formula: see text]. The number of protons released in the dissociation of the third strand from the target duplex at pH 7.0, delta n2, is thereby calculated to be 5.5, in good agreement with approximately six third strand dc residues per mole of triplex. This work shows that when third strand binding requires protonated residues that would otherwise be neutral, triplex formation and dissociation are mediated by proton uptake and release, i.e., a proton switch. As a by-product of this study, we have found that at low pH the Watson-Crick duplex d(A-G)6.d(C-T)6 undergoes a transition to a parallel Hoogsteen duplex d(A-G)6.d(C(+)-T)6.  相似文献   

2.
A study has been made of the fluorescence of poly d(G-m5C).poly d(G-m5C), a synthetic double-stranded DNA, in buffered neutral aqueous solution at room temperature, excited by synchrotron radiation at 280 nm and 250 nm and by a frequency-doubled pulse dye laser at 290 nm. Exciting at 280 nm, the B form shows a uni-modal UV spectrum with lambdaf(max) approximately 340 nm. The Z form has in addition a visible emission lambdaf(max) at 450 nm. The spectral positions remain unchanged on exciting at 250 nm but the relative intensities change considerably. Decay profiles have been obtained at 360 nm and 450 nm for both the B and Z forms and have been analyzed by fitting to a pseudo-continuous distribution of 100 (and occasionally 200) exponentials, ranging from 10 ps to 20 ns, by optimizing the 'entropy' of the signal (the method of maximum entropy). We find the mean lifetimes for both wavelengths of emission and for both structural forms fall into three well-separated regions in the ranges indicated tau1 approximately 0.04-0.21 ns, tau2 approximately 0.9-1.26 ns, and tau3 approximately 5.1-6.5 ns. The UV emission, from its spectral position and half-width, correlates with monomeric emission from m5C (and from C for poly d(G-C)). However the lifetime tau1 is approximately 2 orders of magnitude longer than the monomers and points to an involvement of protonated guanosine (GH+, tauf approximately 200 ps) in the overall absorption/emission sequence. In the UV the tau3 emission is predominant, with fractional time-integrated emission approximately 86% for B DNA and approximately 64% for Z. We suggest it results from exciton (stacked) absorption followed by dissociative emission. For Z DNA the visible (450 nm) emission is dominated by a tau3 species (approximately 91%) with a lifetime of 6.5 ns and we suggest it represents a hetero-excimer emission consequent upon absorption by the strongly overlapped base-stacking, which differs from that in B DNA. The weak emission corresponding to tau2 is made more apparent by scanned gated detection of the emission from laser excitation (290 nm) of single-crystal d(m5C-G)3. A central role is attributed to the tight stacking of the bases in the Z form which correlates with enhanced hypochromism at 250 nm vs. 280 nm and with the reversal of the fluorescence intensity ratios UV-visible between these wavelengths.  相似文献   

3.
Electron paramagnetic resonance (EPR) was used to study an oligodeoxynucleotide duplex of d(CGCG)(2) that is known to crystallize in Z-form. After X irradiation at 4 K, EPR data were collected on single crystals and polycrystalline samples as a function of annealing temperature and dose. A radical produced by the net gain of a hydrogen atom at C6 and a proton at N3, Cyt(C6+H, N3+H(+))(+*), is identified. This radical had not been positively identified in polymeric DNA previously. The Cyt(C6+H, N3+H(+))(+*) makes up about 4% of the total radical population at 4 K, increasing to about 10-15% after the DNA is annealed to 240 K. There appears to be neither an increase nor a decrease in the absolute concentration of Cyt(C6+H, N3+H(+))(+*) upon annealing from 4 K to 240 K. Additionally, the presence of another radical, one due to the net gain of hydrogen at C5 of cytosine, the Cyt(C5+H)(*), is implicated. Together, these two radicals appear to account for 60-80% of the reduced species in DNA that has been irradiated at 4 K and annealed to 240 K.  相似文献   

4.
In the wake of RNA virus infections, dsRNA intermediates are often generated. These viral pathogen-associated molecular patterns can be sensed by a growing number of host cell cytosolic proteins and TLR3, which contribute to the induction of antiviral defenses. Recent evidence indicates that melanoma differentiation-associated gene-5 is the prominent host component mediating IFN production after exposure to the dsRNA analog, poly(I:C). We have previously reported that Punta Toro virus (PTV) infection in mice is exquisitely sensitive to treatment with poly(I:C(12)U), a dsRNA analog that has a superior safety profile while maintaining the beneficial activity of the parental poly(I:C) in the induction of innate immune responses. The precise host factor(s) mediating protective immunity following its administration remain to be elucidated. To assess the role of TLR3 in this process, mice lacking the receptor were used to investigate the induction of protective immunity, type I IFNs, and IL-6 following treatment. Unlike wild-type mice, those lacking TLR3 were not protected against PTV infection following poly(I:C(12)U) therapy and failed to produce IFN-alpha, IFN-beta, and IL-6. In contrast, poly(I:C) treatment significantly protected TLR3(-/-) mice from lethal challenge despite some deficiencies in cytokine induction. There was no indication that the lack of protection was due to the fact that TLR3-deficient mice had a reduced capacity to fight infection because they were not found to be more susceptible to PTV. We conclude that TLR3 is essential to the induction of antiviral activity elicited by poly(I:C(12)U), which does not appear to be recognized by the cytosolic sensor of poly(I:C), melanoma differentiation-associated gene-5.  相似文献   

5.
Background: It is well known that both heat shock protein (HSP) and Toll-like receptor (TLR)3 agonist polyinosinic:polycytidylic acid (poly(I:C)) are capable of promoting the antigen-specific immune responses. In the current study, we assessed whether the anti-tumor effects of the HPV16E749–57-based vaccine can be elevated by combined applications of poly(I:C) and oxygen-regulated protein 150 (ORP150) in a mouse cervical cancer model. Methods: Recombinant mouse ORP150 and HPV E749–57 peptide were combined to passively form the ORP150–E749–57 complex under heat shock conditions. The effects of ORP150–E749–57 complex plus poly(I:C) adjuvant on lymphocyte proliferation and functional cytotoxic T cells were investigated by methyl thiazolyl tetrazolium (MTT), ELISPOT, and non-radioactive cytotoxicity assays. Finally, the complex's therapeutic anti-tumor effects with and without adjuvant therapy were observed in a tumor challenge experiment. Results: This combination vaccine approach significantly enhanced the proliferation of splenocytes and induced strong E749–57-speci?c CTL responses. More importantly, the ORP150–E749–57 complex plus poly(I:C) vaccine format demonstrated more potent anti-tumor effects than ORP150–E749–57 complex alone or E749–57 plus poly(I:C) in TC-1 tumor-bearing mice. Conclusion: Both poly(I:C) and ORP150 chaperone can synergistically enhance the anti-tumor effects of the HPV16E749–57-based vaccine in vitro and in vivo. This strategy provides a platform for the design of a tumor therapeutic vaccine capable of inducing an effective anti-tumor immune response.  相似文献   

6.
The Z form of poly[d(G-m5C)2], in presence of Mg2+ ion, is found to be transformed into B form upon interaction with 4′,6-diamidino-2-phenylindole (DAPI). The Z → B transformation is complete at a mixing ratio of about 0.07 DAPI per DNA base pairs, i.e., each DAPI molecule may be related to the conversion of 6–7 base pairs. An interaction between DAPI and poly[d(G-m5C)2] in its Z form at low drug: DNA ratios is suggested from optical dichroism and time-resolved luminescence anisotropy results. The spectroscopic behaviour of DAPI indicates that the Z conformation of DNA does not provide normal binding sites for DAPI, such as groove or intercalation sites, but that the initial association may be of external nature. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
8.
We have studied the effect of H2O2 and O2- produced by xanthine and xanthine oxidase on NAD catabolism, poly(ADP-ribose) synthesis, and production of DNA single-strand breaks in C3H10T1/2 cells. The results show a correlation between the induction of DNA single-strand breaks, the decrease of NAD pool, and the accumulation of polymer. New techniques, based on affinity chromatography and reversed-phase high pressure liquid chromatography, have allowed an accurate determination of polymer contents and showed a 20-fold stimulation of polymer biosynthesis induced by active oxygen species. Inhibition experiments performed with 3-aminobenzamide have shown that the decrease in NAD levels after exposure of cells to active oxygen species was caused by stimulation of poly(ADP-ribosyl)ation and of another cellular process.  相似文献   

9.
The effect of coconut water (CW) on biomass and docosahexaenoic acid (DHA, C22:6 n3) formation by Schizochytrium mangrovei Sk-02 was studied in a yeast extract-diluted sea water medium. Optimal CW-level was ca. 33% (v/v), resulting in a biomass level of 28 g/l with a DHA-content of 20% (w/w) or 6 g DHA/l, almost 50% higher than in non-supplemented cultures at the same initial sugar level. Study on the growth-promoting effects of coconut water suggested that it could be (partially) mimicked by addition of trace elements; the fatty acids present in CW did not appear to be incorporated or effect fatty acid formation by the organism. CW-addition was also effective in media with other nitrogen sources such as casitone, peptone and tryptone. Its inclusion (at 50% v/v) increased biomass levels two-to-three-fold with concomitant increases in the DHA-level.  相似文献   

10.
The rate of OH radical-induced strand break formation of single-stranded poly(U) in N2O/O2-saturated aqueous solution was studied by measuring the time-dependence of the electrical conductivity following pulse radiolysis. The first half-life of the total conductivity increase depends slightly on pH and the molecular weight and on the dose per pulse. The activation parameters for strand break formation were found to be EA = 52 kJ mol-1 and A = 5 X 10(8) s-1. Similar first half-lives were observed when the decay of peroxyl radicals of poly(U) was measured by e.s.r. under various conditions. This indicates that poly(U)-peroxyl radicals are involved in the rate-determining step of strand break formation. After pulse radiolysis, strand break formation can be inhibited by the addition of dithiothreitol (DTT) in a rapid-mix apparatus. It is postulated that peroxyl radicals of poly(U) react with DTT by formation of hydroperoxides, thereby preventing strand breakage.  相似文献   

11.
5-(2-chloroethyl)-2'-deoxyuridine (CEDU) is a pyrimidine nucleoside analogue formerly in development for the treatment of herpes simplex virus infections. The compound proved clearly mutagenic in the mouse spot test and exhibited weak activity in the Salmonella reverse mutation test, which led to the termination of the compound's development. In another study, CEDU, administered orally to beta-galactosidase (lacZ) transgenic mice (Muta Mouse) for five days, induced a clear increase in lacZ mutant frequencies in spleen, lung, and bone marrow. In the present follow-up study, we analyzed 32 of those lacZ mutants isolated from the bone marrow of the Muta Mouse animals of the experiments mentioned above, in order to obtain further information on the type of mutations induced by CEDU. CEDU induced a pronounced increase in A:T to G:C transitions. The distribution of A:T to G:C transitions was clearly non-random, showing a bias towards T to C substitutions in the coding DNA strand and a preference to occur in the sequence motif 5'-(G or C)-T-G-3'. Our data support the hypothesis that CEDU, after being phosphorylated, is incorporated into cellular DNA in place of thymidine, which leads to mispairing with guanosine during subsequent DNA replication. As a result, the compound is thought to exert its mutagenicity by inducing mismatches leading to T to C transitions. Our findings point towards a mode of mutagenic action of CEDU that differs fundamentally from that of other antiviral antinucleosides whose clastogenic and recombinogenic activities prevail.  相似文献   

12.
13.
14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号