首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed–two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin–myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin–myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.  相似文献   

2.
Microfilaments were isolated from cultured mammalian cells, utilizing procedures similar to those for isolation of "native" thin filaments from muscle. Isolated microfilaments from rat embryo, baby hamster kidney (BHK- 21), and Swiss mouse 3T3 cells appeared structurally similar to muscle thin filaments, exhibiting long, 6 nm Diam profiles with a beaded, helical substructure. An arrowhead pattern was observed after reaction of isolated microfilaments with rabbit skeletal muscle myosin subfragment 1. Under appropriate conditions, isolated microfilaments will aggregate into a form that resembles microfilament bundles seen in situ cultured cells. Isolated microfilaments represent a complex of proteins including actin. Some of these components have been tentatively identified, based on coelectrophoresis with purified proteins, as myosin, tropomyosin, and a high molecular weight actin-binding protein. The tropomyosin components of isolated microfilaments were unexpected; polypeptides comigrated on SDS-polyacrylamide gels with both muscle and nonmuscle types of tropomyosin. In order to identify more specifically these subunits, we isolated and partially characterized tropomyosin from three cell types. BHK-21 cell tropomyosin was similar to other nonmuscle tropomyosins, as judged by several criteria. However, tropomyosin isolated from rate embryo and 3T3 cells contained subunits that comigrated with both skeletal muscle and nonmuscle types of myosin, whereas the BHK cell protein consistently contained a minor muscle-like subunit. The array of tropomyosin subunits present in a cell culture was reflected in the polypeptide chain pattern seen on SDS-polyacrylamide gels of microfilaments isolated from that culture. These studies provide a starting point for correlating changes in the ultrastructural organization of microfilaments with alterations in their protein composition.  相似文献   

3.
We have selected tropomyosin subunits and myosin light chains as representative markers of the myofibrillar proteins of the thin and thick filaments and have studied changes in the type of proteins present during development in chicken and rabbit striated muscles. The β subunit of tropomyosin is the major species found in all embryonic skeletal muscles studied. During development the proportion of the α subunit of tropomyosin gradually increases so that in adult skeletal muscles the α subunit is either the only or the major species present. In contrast, cardiac muscles of both chicken and rabbit contain only the α subunit which remains invariant with development. Two subspecies of the α subunit of tropomyosin which differ in charge only were found in adult and embryonic chicken skeletal muscles. Only one of these subspecies seems to be common to chicken cardiac tropomyosin. With respect to myosin light chains, embryonic skeletal fast muscle myosin of both species resembles the adult fast muscle myosin except that the LC3 light chain characteristic of the adult skeletal fast muscle is present in smaller amounts. The significance of these isozymic changes in the two myofibrillar proteins is discussed in terms of a model of differential gene expression during development of chicken and rabbit skeletal muscles.  相似文献   

4.
Cellular myosin, actin, and tropomyosin contents and ratios were determined for arterial (carotid, aorta, and coronary), intestinal (circular and longitudinal), esophageal, uterine, and tracheal smooth muscles inthe pig. Tissue protein contents were estimated by densitometry of polyacrylamide gels after electrophoresis of sodium dodecyl sulfate-treated tissue homogenates. Cellular contractile protein contents were estimated by correction for extracellular spaces. Cellular myosin contents were similar in each tissue (average +/- 1 SEM = 19.6 +/- 0.8 mg/g cell wet wt). However, the cellular contents of the thin filament proteins, actin and tropomyosin, were significantly higher in the arteries than in the nonarterial tissues. The calculated weight ratios of actin: myosin averaged 2.6 +/- 0.2 in the three arterial tissues and 1.5 +/- 0.1 in the nonarterial tissues, which may be compared with 0.36 in vertebrate striated muscles. The actin:tropomyosin weight ratios for all tissues were 3.7 +/- 0.1, a value comparable to the skeletal muscle ratio. The physiological implications of variations in the cellular thin filament protein contents are unknown, but these variations probably contribute to the observed differences in contractile function among various smooth muscles.  相似文献   

5.
Smooth and non-muscle tropomyosins were found to produce a 2-3-fold Ca-insensitive stimulation of the ATPase activity of reconstituted skeletal muscles actomyosin at normal MgATP concentrations and physiological ratios of myosin to actin. Under the same conditions skeletal muscles tropomyosin had no effect. Similar effects of these three tropomyosins were observed for the low myosin/F-actin ratios necessary for kinetic measurements. Since it could be established that this actomyosin system, with or without tropomyosin, obeyed Michaelian kinetics, the tropomyosin effects could be interpreted in terms of their influence on maximal turnover (V) or on the affinity of myosin for actin (Kapp). Accordingly, gizzard tropomyosin had practically no effect on the affinity and reduced only slightly the value of V, compared to pure actin. In contrast to gizzard tropomyosin, brain tropomyosin produced an approximately twofold increase in both Kapp and V; i.e. it increased the turnover rate but decreased the affinity. It is apparent from the data that brain tropomyosin acts as an uncompetitive activator with respect to pure actin, while having the same V as the actin plus gizzard tropomyosin complex. Further studies on these tropomyosins show that only skeletal and smooth muscle tropomyosin have similar functional properties with respect to troponin inhibition and the activation of the ATPase at low ATP concentrations. It is suggested that the noted increases in V by tropomyosin are caused by the acceleration of the dissociation of the myosin head from actin at the end point of the cross bridge movement.  相似文献   

6.
Abstract. A light and electron immunohistochemical study was carried out on the body wall muscles of the chaetognath Sagitta friderici for the presence of a variety of contractile proteins (myosin, paramyosin, actin), regulatory proteins (tropomyosin, troponin), and structural proteins (α‐actinin, desmin, vimentin). The primary muscle (~80% of body wall volume) showed the characteristic structure of transversely striated muscles, and was comparable to that of insect asynchronous flight muscles. In addition, the body wall had a secondary muscle with a peculiar structure, displaying two sarcomere types (S1 and S2), which alternated along the myofibrils. S1 sarcomeres were similar to those in the slow striated fibers of many invertebrates. In contrast, S2 sarcomeres did not show a regular sarcomeric pattern, but instead exhibited parallel arrays of 2 filament types. The thickest filaments (~10–15 nm) were arranged to form lamellar structures, surrounded by the thinnest filaments (~6 nm). Immunoreactions to desmin and vimentin were negative in both muscle types. The primary muscle exhibited the classical distribution of muscle proteins: actin, tropomyosin, and troponin were detected along the thin filaments, whereas myosin and paramyosin were localized along the thick filaments; immunolabeling of α‐actinin was found at Z‐bands. Immunoreactions in the S1 sarcomeres of the secondary muscle were very similar to those found in the primary muscle. Interestingly, the S2 sarcomeres of this muscle were labeled with actin and tropomyosin antibodies, and presented no immunore‐actions to both myosin and paramyosin. α‐Actinin in the secondary muscle was only detected at the Z‐lines that separate S1 from S2. These findings suggest that S2 are not true sarcomeres. Although they contain actin and tropomyosin in their thinnest filaments, their thickest filaments do not show myosin or paramyosin, as the striated muscle thick myofilaments do. These peculiar S2 thick filaments might be an uncommon type of intermediate filament, which were labeled neither with desmin or vimentin antibodies.  相似文献   

7.
Utrophin, like its homologue dystrophin, forms a link between the actin cytoskeleton and the extracellular matrix. We have used a new method of image analysis to reconstruct actin filaments decorated with the actin-binding domain of utrophin, which contains two calponin homology domains. We find two different modes of binding, with either one or two calponin-homology (CH) domains bound per actin subunit, and these modes are also distinguishable by their very different effects on F-actin rigidity. Both modes involve an extended conformation of the CH domains, as predicted by a previous crystal structure. The separation of these two modes has been largely dependent upon the use of our new approach to reconstruction of helical filaments. When existing information about tropomyosin, myosin, actin-depolymerizing factor, and nebulin is considered, these results suggest that many actin-binding proteins may have multiple binding sites on F-actin. The cell may use the modular CH domains found in the spectrin superfamily of actin-binding proteins to bind actin in manifold ways, allowing for complexity to arise from the interactions of a relatively few simple modules with actin.  相似文献   

8.
Ali LF  Cohen JM  Tobacman LS 《Biochemistry》2010,49(51):10873-10880
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory and is due to tropomyosin's statistically preferred positions on actin that sterically interfere with actin's strong attachment site for myosin. Contrastingly, tropomyosin's other influence is activating. It increases myosin's overall actin affinity ~4-fold. Stoichiometric considerations cause this activating effect to equate to an ~4(7)-fold effect of myosin on the actin affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if Saccharomyces cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38-residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled coils to allow functional study. The two chimeras differed from TPM1 but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin affinity of chimera 7, which contained muscle tropomyosin residues 228-265. On the other hand, myosin S1 increased by an order of magnitude the actin affinity of chimera 3, which contained muscle tropomyosin residues 74-111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild-type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather, they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.  相似文献   

9.
The effect of innervation on the transition of tropomyosin, troponin T, and myosin isozyme during chicken breast muscle development was examined by denervating the muscle at various ages after hatching. The types of proteins were characterized by 2-D electrophoresis for tropomyosin, immunoblotting for troponin T and pyro-phosphate acrylamide gel electrophoresis for myosin isozymes. As judged by the types of these three proteins, when neonatal muscle was denervated, the protein isoform transition from the neonatal to adult state was interrupted, whereas the denervation of mature muscle caused the reappearance of the neonatal forms of proteins. The present results indicate that differentiation from the neonatal state to the adult state and the maintenance of the adult state are controlled by some factors related to nerves.  相似文献   

10.
To be effective as a gatekeeper regulating the access of binding proteins to the actin filament, adjacent tropomyosin molecules associate head-to-tail to form a continuous super-helical cable running along the filament surface. Chimeric head-to-tail structures have been solved by NMR and X-ray crystallography for N- and C-terminal segments of smooth and striated muscle tropomyosin spliced onto non-native coiled-coil forming peptides. The resulting 4-helix complexes have a tight coiled-coil N-terminus inserted into a separated pair of C-terminal helices, with some helical unfolding of the terminal chains in the striated muscle peptides. These overlap complexes are distinctly curved, much more so than elsewhere along the superhelical tropomyosin cable. To verify whether the non-native protein adducts (needed to stabilize the coiled-coil chimeras) perturb the overlap, we carried out Molecular Dynamics simulations of head-to-tail structures having only native tropomyosin sequences. We observe that the splayed chains all refold and become helical. Significantly, the curvature of both the smooth and the striated muscle overlap domain is reduced and becomes comparable to that of the rest of the tropomyosin cable. Moreover, the measured flexibility across the junction is small. This and the reduced curvature ensure that the super-helical cable matches the contours of F-actin without manifesting localized kinking and excessive flexibility, thus enabling the high degree of cooperativity in the regulation of myosin accessibility to actin filaments.  相似文献   

11.
The distribution of actin and the microfilament-associated proteins myosin and tropomyosin was studied in mitotic PtK2 cells. Using fluorescent heavy meromyosin and two different antibodies against actin we have found no evidence for increased accumulations of actin in the mitotic spindle but have found increased levels of actin in the cleavage furrow and the contractile ring. Short, thin microfilament pieces remain detectable in the cytoplasm throughout mitosis. Purified antibodies against myosin and tropomyosin also revealed no increased levels of these proteins in the spindle region, although both proteins were found in the contractile ring and areas of the cytoplasm close to the intercellular bridge. These data are in agreement with functional and ultrastructural studies involving a role for actin and microfilament-related proteins in cytokinesis. They do not support models in which microfilament-related proteins are assumed to be a major constituent of the mitotic spindle.  相似文献   

12.
The addition of either smooth muscle or brain tropomyosin to skeletal muscle actoheavy meromyosin (HMM) or acto-myosin subfragment-1 (SF1) produces an activation of the actin-activated ATPase activity up to 100%. This contrasts with the opposite, inhibitory effect produced by skeletal muscle tropomyosin. The degree of activation or inhibition depends on the ionic conditions, which influence the affinities of tropomyosin and HMM or SF1 for actin as well as on the molar ratio of actin to myosin.Enzyme kinetic analysis indicates that the inhibitory effect of skeletal muscle tropomyosin results from an approximately six- to tenfold increase in the apparent affinity (Kapp) of the myosin head for the F-actin-tropomyosin complex with a concomitant six- to tenfold reduction in the maximal turnover rate (Vmax). Thus, there is no direct competition of skeletal muscle tropomyosin and myosin for the same site on actin. Brain tropomyosin has an opposite effect, decreasing the apparent affinity with concomitant increase in the Vmax.The effect of smooth muscle tropomyosin is more complex. At high ratios of myosin to actin this tropomyosin produces the same change in the Kapp as skeletal muscle tropomyosin but yields a value of Vmax that is about twofold higher. At lower molar ratios (below about 1 to 5 myosin subfragments to actin) the activating effect of this tropomyosin remains unchanged while the apparent affinity decreases to that observed for pure F-actin.On the basis of these data as well as from experiments carried out at fixed actin and varying SF1 concentrations, it is concluded that tropomyosins act in general as allosteric un-competitive inhibitors or activators of actomyosin by increasing or reducing the co-operative activation of myosin by actin at the level of product release.  相似文献   

13.
Vertebrate nonmuscle myosins contain two phosphorylatable light chains. The maximum rate, Vmax, of the actin-activated adenosinetriphosphatase (ATPase) of unphosphorylated calf thymus myosin was found to be about 100 nmol/(min X mg), the same as that of thymus myosin with two phosphorylated light chains. However, the Kapp (actin concentration required to achieve 1/2 Vmax) of the unphosphorylated myosin was 15-20-fold greater than that of the phosphorylated myosin. When actin complexed with either skeletal muscle tropomyosin or calf thymus tropomyosin was used, the values for Vmax were about the same as those obtained with F-actin. In the presence of skeletal muscle tropomyosin, the Kapp of the unphosphorylated myosin was only 2-3-fold greater than that of the phosphorylated myosin, and in the presence of thymus tropomyosin, there was about a 5-fold difference in their Kapp values. Thus, light chain phosphorylation regulates the actin-activated ATPase of thymus myosin not by increasing Vmax but rather by decreasing the Kapp of this myosin for actin. These rather small differences in Kapp suggest that other proteins may be involved in the regulation of the actin-activated ATPase of thymus myosin. Regulated actin (actin plus skeletal muscle troponin-tropomyosin) was used to examine possible effects of thin-filament regulatory proteins. In the presence of calcium, phosphorylation caused only a slight increase in Vmax and a 2-fold decrease in Kapp of the regulated actin-activated ATPase of thymus myosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The interaction between myosin and actin in striated muscle tissue is regulated by Ca2+ via thin filament regulatory proteins. Skeletal muscle possesses a whole pattern of myosin and tropomyosin isoforms. The regulatory effect of tropomyosin on actin-myosin interaction was investigated by measuring the sliding velocity of both actin and actin-tropomyosin filaments over fast and slow skeletal myosins using the in vitro motility assay. The actin-tropomyosin filaments were reconstructed with tropomyosin isoforms from striated muscle tissue. It was found that tropomyosins with different content of α-, β-, and γ-chains added to actin filaments affect the sliding velocity of filaments in different ways. On the other hand, the sliding velocity of filaments with the same content of α-, β-, and Γ-chains depends on myosin isoforms of striated muscle. The reciprocal effects of myosin and tropomyosin on actin-myosin interaction in striated muscle may play a significant role in maintenance of effective work of striated muscle both during ontogenesis and under pathological conditions.  相似文献   

15.
Interaction of myosin with actin in striated muscle is controlled by Ca2+ via thin filament associated proteins: troponin and tropomyosin. In cardiac muscle there is a whole pattern of myosin and tropomyosin isoforms. The aim of the current work is to study regulatory effect of tropomyosin on sliding velocity of actin filaments in the in vitro motility assay over cardiac isomyosins. It was found that tropomyosins of different content of α- and β-chains being added to actin filament effects the sliding velocity of filaments in different ways. On the other hand the velocity of filaments with the same tropomyosins depends on both heavy and light chains isoforms of cardiac myosin.  相似文献   

16.
Past attempts to detect tropomyosin in electron micrograph images of frozen-hydrated troponin-regulated thin filaments under relaxing conditions have not been successful. This raised the possibility that tropomyosin may be disordered on filaments in the off-state, a possibility at odds with the steric blocking model of muscle regulation. By using cryoelectron microscopy and helical image reconstruction we have now resolved the location of tropomyosin in both relaxing and activating conditions. In the off-state, tropomyosin adopts a position on the outer domain of actin with a binding site virtually identical to that determined previously by negative staining, although at a radius of 3.8 nm, slightly higher than found in stained filaments. Molecular fitting to the atomic model of F-actin shows that tropomyosin is localized over sites on actin subdomain 1 required for myosin binding. Restricting access to these sites would inhibit the myosin-cross-bridge cycle, and hence contraction. Under high Ca(2+) activating conditions, tropomyosin moved azimuthally, away from its blocking position to the same site on the inner domain of actin previously determined by negative staining, also at 3.8 nm radius. These results provide strong support for operation of the steric mechanism of muscle regulation under near-native solution conditions and also validate the use of negative staining in investigations of muscle thin filament structure.  相似文献   

17.
Striated muscle tropomyosin spans seven actin monomers and contains seven quasi-repeating regions with loose sequence similarity. Each region contains a hypothesized actin binding motif. To examine the functions of these regions, full-length tropomyosin was compared with tropomyosin internal deletion mutants spanning either five or four actins. Actin-troponin-tropomyosin filaments lacking tropomyosin regions 2-3 exhibited calcium-sensitive regulation in in vitro motility and myosin S1 ATP hydrolysis experiments, similar to filaments with full-length tropomyosin. In contrast, filaments lacking tropomyosin regions 3-4 were inhibitory to these myosin functions. Deletion of regions 2-4, 3-5, or 4-6 had little effect on tropomyosin binding to actin in the presence of troponin or troponin-Ca(2+), or in the absence of troponin. However, all of these mutants inhibited myosin cycling. Deletion of the quasi-repeating regions diminished the prominent effect of myosin S1 on tropomyosin-actin binding. Interruption of this cooperative, myosin-tropomyosin interaction was least severe for the mutant lacking regions 2-3 and therefore correlated with inhibition of myosin cycling. Regions 3, 4, and 5 each contributed about 1.5 kcal/mol to this process, whereas regions 2 and 6 contributed much less. We suggest that a myosin-induced conformational change in actin facilitates the azimuthal repositioning of tropomyosin which is an essential part of regulation.  相似文献   

18.
The effects of caldesmon on structural and dynamic properties of phalloidin-rhodamine-labeled F-actin in single skeletal muscle fibers were investigated by polarized microphotometry. The binding of caldesmon to F-actin in glycerinated fibers reduced the alterations of thin filaments structure and dynamics that occur upon the transition of the fibers from rigor to relaxing conditions. In fibers devoid of myosin and regulatory proteins (ghost fibers) the binding of caldesmon to F-actin precluded structural changes in actin filaments induced by skeletal muscle myosin subfragment 1 and smooth muscle tropomyosin. These results suggest that the restraint for the alteration of actin structure and dynamics upon binding of myosin heads and/or tropomyosin evoked by caldesmon can be related to its inhibitory effect on actin-myosin interaction.  相似文献   

19.
We have used an enzymatic technique to determine the weakening effect of paratropomyosin, a new myofibrillar protein, on rigor linkages formed between actin and myosin, and to clarify the distinct function of paratropomyosin, as to that of tropomyosin. Paratropomyosin inhibited the Mg-ATPase activity and enhanced the K-ATPase activity of reconstituted actomyosin stoichiometrically, and its maximal binding to actin was estimated to occur at a molar ratio of 1: 12.5. Paratropomyosin also inhibited the myofibrillar Mg-ATPase activity by 49% and enhanced the myofibrillar K-ATPase activity to 126%, while tropomyosin had no effect on these ATPases. These results indicate that paratropomyosin is able to bind to thin filaments of myofibrils, because the binding site for paratropomyosin on F-actin is different from that for tropomyosin, and that, due to its greater affinity for the myosin binding site on actin, paratropomyosin competes for the binding site and helps weaken rigor linkages.  相似文献   

20.
Indirect immunofluorescence microscopy was used to localize microfilament-associated proteins in the brush border of mouse intestinal epithelial cells. As expected, antibodies to actin decorated the microfilaments of the microvilli, giving rise to a very intense fluorescence. By contrast, antibodies to myosin, tropomyosin, filamin, and alpha-actinin did not decorate the microvilli. All these antibodies, however, decorated the terminal web region of the brush border. Myosin, tropomyosin, and alpha-actinin, although present throughout the terminal web, were found to be preferentially located around the periphery of the organelle. Therefore, two classes of microfilamentous structures can be documented in the brush border. First, the highly ordered microfilaments which make up the cores of the microvilli apparently lack the associated proteins. Second, seemingly less-ordered microfilaments are found in the terminal web, in which region the myosin, tropomyosin, filamin and alpha-actinin are located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号