首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of oxygen limitation on the stability of a recombinant yeast plasmid was measured during continuous culture in a non-selective medium. The fraction of plasmid containing cells was found to decrease more rapidly after a step change to low dissolved oxygen (DOT) levels. An increased rate of plasmid loss appeared to be the major cause of the decreased stability.  相似文献   

2.
The stability of the 2 mu-based yeast plasmid pJDB248 in Saccharomyces cerevisiae S150-2B(cir0) was investigated in glucose-limited chemostat culture. Plasmid-free cells were detected by loss of (plasmid-encoded) leucine prototrophy and confirmed by colony hybridization. The plasmid was considerably more stable at a high dilution rate (0.12 h-1) than at a lower dilution rate (0.05 h-1). The average plasmid copy number in the cells retaining the plasmid remained constant at approximately 50 in the high dilution rate culture whereas it rose to almost 600 in the slow dilution rate culture. However, in both cultures the overall plasmid level in the total population remained constant, indicating that plasmid segregation breaks down at the low growth rate. Similar experiments on the native 2 mu plasmid demonstrated high stability and no significant differences between the high and low growth rate cultures. It is postulated that the difference in behaviour between the native and chimeric plasmids is related to an interaction between the growth conditions and the loss of the D gene product.  相似文献   

3.
Summary In the hepatitis B surface antigen (HBsAg)-producing recombinant yeast culture medium, the supply of Bacto-yeast nitrogen base without amino acids was found to be inadequate due to the lack of the several kinds of vitamins and trace elements. When the culture medium for this recombinant yeast was supplemented with sufficient vitamins and trace elements, its growth, HBsAg production and the stability of plasmid were improved.  相似文献   

4.
Saccharomyces cerevisiae autoselection strains with mutations in the ura3, fur1, and urid-k genes have been obtained through a sequential isolation procedure. This autoselection system is an extension of one described by Loison et al. The mutations effectively block both the pyrimidine biosynthetic and salvage pathways and in combination are lethal to the host. Therefore, a plasmidencoded URA3 gene is essential for cell viability regardless of the growth conditions, and complex (traditionally nonselective) media can be employed without the risk of plasmid loss. The effects of medium enrichment on growth and cloned gene product synthesis were examined in batch culture for two autoselection strains. The plasmid gene product beta-galactosidase was under the control of the yeast GAL1 promoter, and two methods of induction were employed; one strain was induced via temperature shift while the other was induced by galactose addition. Three nutrient media were investigated: a lean selective medium (SD), a richer semidefined medium (SDC), and a rich complex medium (YPD). The results demonstrated the improvements in cloned gene productivity possible when the growth medium is enriched, with up to 10-fold increases in beta-galactosidase productivity observed. Plasmid instability and mutation reversion were not problems for the autoselection strains, even in uracil-containing medium. Short-term plasmid stabilities were approximately 90% in all three media tested. During continuous culture of the autoselection temperature-sensitive strain, long-term plasmid stability was excellent and beta-galactosidase expression remained high after more than 25 residence times under inducing conditions. In contrast, both beta-galactosidase specific activity and plasmid stability decreased linearly with time for an analogous nonautoselection strain. The introduced fur1 and uridk mutations were very stable; after more than 50 generations of growth in complex medium, stability values of 99-100% were measured. (c) 1993 Wiley & Sons, Inc.  相似文献   

5.
6.
A leucine auxotroph strain of Saccharomyces cerevisiae was used to study plasmid stability and expression using a recombinant plasmid, which contained a foreign gene for firefly luciferase (luc). This recombinant yeast was tested in a series of continuous cultures in semi-defined media with varying concentrations of yeast extract in order to study its effect on stability. While the biomass concentration and luciferase activity increased with increasing concentrations of yeast extract, the plasmid stability declined. An analysis of the growth rates showed that the recombinants enjoyed a growth rate advantage over the plasmid-free cells at critically low yeast extract concentrations, possibly due to leucine starvation in the media. A two-stage cultivation strategy was designed in order to create a yeast extract limited environment so that plasmid-free cells could not grow and overtake the recombinant cells. The cells were cultivated in selective media in the first stage, and then transferred continuously to the second stage where the media was enriched by feeding yeast extract. The feed rate was kept low in order to ensure yeast extract and hence leucine starvation, thereby selecting against the plasmid-free cells. This strategy resulted in a stable existence of recombinant cells, which stabilized around 60% at steady state during the tested period of cultivation. The complex nitrogen feed helped in increasing the cell density and volumetric activity by approximately 9 and 18-fold respectively with respect to that achieved in minimal medium. The experimental data was used to formulate a mathematical model to predict cell growth and plasmid stability in two-stage cultivation, which correctly explained the experimental data.  相似文献   

7.
It is known that heterogeneous conditions exist in large-scale animal cell cultures. However, little is known about how heterogeneities affect cells, productivities, and product quality. To study the effect of non-constant dissolved oxygen tension (DOT), hybridomas were subjected to sinusoidal DOT oscillations in a one-compartment scale-down simulator. Oscillations were forced by manipulating the inlet oxygen partial pressure through a feedback control algorithm in a 220-mL bioreactor maintained at a constant agitation. Such temporal DOT oscillations simulate spatial DOT gradients that can occur in large scales. Different oscillation periods, in the range of 800 to 12,800 s (axis of 7% (air saturation) and amplitude of 7%), were tested and compared to constant DOT (10%) control cultures. Oscillating DOT decreased maximum cell concentrations, cell growth rates, and viability indexes. Cultures at oscillating DOT had an increased glycolytic metabolism that was evidenced by a decrease in yield of cells on glucose and an increase in lactate yield. DOT gradients, even several orders of magnitude higher than those expected under practical large-scale conditions, did not significantly affect the maximum concentration of an IgG(1) monoclonal antibody (MAb). The glycosylation profile of the MAb produced at a constant DOT of 10% was similar to that reported in the literature. However, MAb produced under oscillating culture conditions had a higher amount of triantennary and sialylated glycans, which can interfere with effector functions of the antibody. It was shown that transient excursions of hybridomas to limiting DOT, as occurs in deficiently mixed large-scale bioreactors, is important to culture performance as the oscillation period, and thus the time cells spent at low DOT, affected cell growth, metabolism, and the glycosylation pattern of MAb. Such results underline the importance of monitoring protein characteristics for the development of large-scale processes.  相似文献   

8.
Conditions for high-cell-density fermentations of Saccharomyces cerevisiae strains producing recombinant-DNA-derived proteins were established. Strains producing human immune interferon (IFN-gamma) from the constitutive PGK promoter failed to grow to high cell densities and exhibited low plasmid stability. Regulated expression of IFN-gamma was obtained in similar strains by employing a hybrid yeast GPD promoter that was subject to carbon source regulation due to the presence of regulatory DNA sequences from the yeast GAL 1,10 intergenic region. IFN-gamma expression programmed by this vector was low during growth on glucose and was induced by galactose. Previously defined fermentation conditions employing glucose as a carbon source were applied to this strain, resulting in high ceil densities with higher plasmid stability. Various methods of galactose induction of IFN-gamma expression in high-cell-density fermentations were investigated. Optimal conditions resulted in a 2000-fold induction and production of 2 g IFN-gamma/L fermentation culture.  相似文献   

9.
The antibiotic, difficidin, and its hydroxylated derivative, oxydifficidin, were synthesised by cultures of Bacillus subtilis grown on a complex medium in batch culture at dissolved oxygen tensions (DOT) of 15, 20 and 40% air saturation. During part of the growth phase the DOT was cycled about the control value and the effect on growth and antibiotic production observed. In fermentations with cycling at 15 and 20% DOT the growth yields were lower than for the fermentations done at constant DOT throughout. There appears to be a complex interaction between growth rate and difficidin production rate which led to a reduced specific production rate at 15% DOT as a result of cycling.UCL is the Biotechnology and Biological Sciences Research Council Interdisciplinary Research Centre for Biochemical Engineering and the Council's support is gratefully acknowledged. The authors wish to thank Merck & Co. for provision of the difficidin and oxydifficidin used to calibrate the HPLC assay.  相似文献   

10.
A recombinant yeast plasmid carrying the Ieu2 gene for auxotrophic complementation and a reporter gene for beta-galactosidase under the control of Gal10 promoter was studied in Saccharomyces cerevisiae. Growth, product formation, and plasmid stability were studied in defined, semi-defined, and complex media. The biomass concentration and specific activity were higher in complex medium than in defined medium, which was selective for the growth of plasmid-containing cells, leading to a 10-fold increase in volumetric activity. However, plasmid instability was very high in complex media with 50% plasmid-free cells emerging in the culture within 75 h of cultivation. In order to control instability, the growth rates of the plasmid-containing and plasmid-free cells were determined in semi-defined media, which consisted of defined medium supplemented with different concentrations of yeast extract. Below a critical concentration of yeast extract (0.05 g/L), the plasmid-containing cells had a growth rate advantage over the plasmid-free cells. This was possibly because, at this concentration of yeast extract, the availability of leucine became the rate-determining factor in the specific growth rate of plasmid-free cells. A feeding strategy was designed which maintained a low concentration of the residual yeast extract in the medium and thus continuously provided the plasmid-containing cells with a competitive advantage over the plasmid-free cells. This resulted in high stability as well as high cell density under non-selective conditions, which led to a 10-fold increase in the volumetric activity compared to that achieved in defined selective media. A simple mathematical model was formulated to verify the experimental data. The important state variables and process parameters, i.e., biomass concentration, beta-galactosidase expression, sucrose consumption, yeast extract consumption, and specific growth rates of the two cell populations, were evaluated. These variables and parameters along with the differential equations based on material balances as well as the experimental results obtained were used in a mathematical model for the fed-batch cultivation. These correctly verified the experimental data and clearly illustrated the concept behind the success of the fed-batch strategy under yeast extract starvation.  相似文献   

11.
The effects of plasmid promoter strength and origin of replication on cloned gene expression in recombinant Saccharomyces cerevisiae have been studied in batch and continuous culture. The plasmids employed contain the Escherichia coli lacZ gene under the control of yeast promoters regulated by the galactose regulatory circuit. The synthesis of beta-galactosidase was therefore induced by the addition of galactose. The initial induction transients in batch culture were compared for strains containing plasmids with 2mu and ARS1 origins. As expected, cloned gene product synthesis was much lower with the ARS1 plasmid: average beta-galactosidase specific activity was an order of magnitude below that with the 2mu-based plasmid. This was primarily due to the low plasmid stability of 7.5% when the plasmid origin of replication was the ARS1 element. The influence of plasmid promoter strength was studied using the yeast GAL1, GAL10, and hybrid GAL10-CYC1 promoters. The rate of increase in beta-galactosidase specific activity after induction in batch culture was 3-5 times higher with the GAL1 promoter. Growth rate under induced conditions, however, was 15% lower than in the absence of lacZ expression for this promoter system. The influence of plasmid promoter strength on induction behavior and cloned gene expression was also studied in continuous fermentations. Higher beta-galactosidase production and lower biomass concentration and plasmid stability were observed for the strain bearing the plasmid with the stronger GAL1 promoter. Despite the decrease in biomass concentration and plasmid stability, overall productivity in continuous culture using the GAL1 promoter was three times that obtained with the GAL10-CYC1 promoter.  相似文献   

12.
The effects of dilution rates on the performance of a two-stage fermentation system for a recombinant Escherichia coli culture were studied. Dilution rate determines the apparent or averaged specific growth rate of a heterogeneous population of cells in the recombinant culture. The specific growht rate affects the genetic parameters involved in product formation in the second stage, such as plasmid stability, plasmid content, and specific gene expression rate. Kinetic models and correlations were developed for these parameters based on experimental data. Simulations of plasmid stability in the first stage showed that for longer fermentation periods, plasmid stability is better at higher dilution rates. However, the plasmid content is lower at these dilution rates. The optimal apparent specific growth rate for maximum productivity in the second stage was determined using two methods: (1) direct search for a constant specific growth rate, and (2) dynamic optimization using the maximum principle for a time-dependent specific growth rate profile. The results of the calculations showed that the optimum constant apparent specific growth rate for maximum over-all productivity is 0.40 h(-1). This coincides with the optimal specific growht rate for maximum plasmid content in the expressed stage. A 3.5% increase in overall productivity can be obtained by using a linear time dependent apparent specific growth rate control, mu(2)(t) = 0.0007t, in the course of the fermentation time.  相似文献   

13.
Y Jigami  M Muraki  N Harada  H Tanaka 《Gene》1986,43(3):273-279
A multicopy plasmid was constructed to direct the synthesis and secretion of human lysozyme (HLY) in Saccharomyces cerevisiae. This plasmid contains a synthetic chicken-lysozyme signal sequence (SIG) and a synthetic HLY structural gene, both inserted between the yeast GAL10 promoter and 2 mu plasmid FLP (flip-flop recombination gene) terminator. The resulting plasmid directed the expression of the hybrid pre-lysozyme, with most of the HLY activity secreted into the culture medium and extracellular periplasmic space. The HLY activity in the culture medium increased with cell growth. The yeast accurately processed the hybrid precursor at the junction between the chicken SIG and the coding sequence downstream, yielding mature HLY. HLY purified from the culture medium was homogeneous and displayed specific activity identical to that of authentic HLY.  相似文献   

14.
The recombinant human granulocyte-colony-stimulating factor (rhG-CSF) was synthesized in a fusion protein using a GAL1-10 UAS in recombinant Saccharomyces cerevisiae and the intracellular KEX2 cleavage led excretion of mature rhG-CSF into the extracellular culture broth. The recombinant yeast growth in fed-batch cultures was controlled by precise computer-aided medium feed. The optimal C/N ratio in preinduction (glucose/Casamino acids) and post-induction (galactose/yeast extract) feed media was determined at 3 and 2, respectively. The final rhG-CSF and cell concentration was more than 60 mg/L and 70 g/L, respectively, with around 90% plasmid stability and negligible ethanol accumulation. Comparing the cell growth between the hG-CSF + and hG-CSF - recombinant strains shows that the cloned gene product does not hamper the host cell growth.  相似文献   

15.
D L Ludwig  C V Bruschi 《Plasmid》1991,25(2):81-95
The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.  相似文献   

16.
The effects of growth rate on cloned gene product synthesis in recombinant Saccharomyces cerevisiae have been studied in continuous culture. The plasmid employed contains a yeast GAL10-CYC1 hybrid promoter directing expression of the E. coli lacZ gene. beta-Galactosidase production was therefore controlled by the yeast galactose regulatory circuit, and the induction process and its effects were studied at the various dilution rates. At all dilution rates plasmid stability decreased with induction of lacZ gene expression. In some instances, two induced "steady states" were observed, the first 10-15 residence times after induction and the second after 40-50 residence times. The second induced steady state was characterized by greater biomass concentration and lower beta-galactosidase specific activity relative to the first induced "steady-state." beta-Galactosidase specific activity and biomass concentration increased as dilution rate was reduced, and despite lower flow rate and plasmid stability, overall productivity (activity/L/hr) was substantially higher at low dilution rate. Important factors influencing all of the trends were the glucose and galactose (inducer) concentrations in the vessel and inducer metabolism.  相似文献   

17.
Plasmids are common vectors to genetically manipulate Escherichia coli or other microorganisms. They are easy to use and considerable experience has accumulated on their application in heterologous protein production. However, plasmids can be lost during cell growth, if no selection pressure like, e.g., antibiotics is used, hampering the production of the desired protein and endangering the economic success of a biotechnological production process. Thus, in this study the Continuously Operated Shaken BIOreactor System (COSBIOS) is applied as a tool for fast parallel testing of strain stability and operation conditions and to evaluate measures to counter such plasmid loss. In specific, by applying various ampicillin concentrations, the lowest effective ampicillin dosage is investigated to secure plasmid stability while lowering adverse ecological effects. A significant difference was found in the growth rates of plasmid‐bearing and plasmid‐free cells. The undesired plasmid‐free cells grew 30% faster than the desired plasmid‐bearing cells. During the testing of plasmid stability without antibiotics, the population fraction of plasmid‐bearing cells rapidly decreased in continuous culture to zero within the first 48 h. An initial single dosage of ampicillin did not prevent plasmid loss. By contrast, a continuous application of a low dosage of 10 µg/mL ampicillin in the feed medium maintained plasmid stability in the culture. Consequently, the COSBIOS is an apt reactor system for measuring plasmid stability and evaluating methods to enhance this stability. Hence, decreased production of heterologous protein can be prevented. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1418–1425, 2016  相似文献   

18.
A recombinant Saccharomyces cerevisiae C468/pGAC9 (ATCC 20690), which expresses Aspergillus awamori glucoamylase gene under the control of the yeast enolase I (ENO1) promoter and secretes glucoamylase into the extracellular medium, was used as a model system to investigate the effect of cell immobilization on bioreactor culture performance. Free suspension cultures in stirred-tank and airlift bioreactors confirmed inherent genetic instability of the recombinant yeast. An immobilized-cell-film airlift bioreactor was developed by employing cotton cloth sheets to immobilize the yeast cells by attachment. Enhanced enzyme productivity and production stability in the immobilized-cell system were observed. Experimental data indicated that the immobilized cells maintained a higher proportion of plasmid-bearing cells for longer periods under continuous operation. The higher plasmid maintenance with immobilized cells is possibly due to reduced specific growth rate and increased plasmid copy number. Double-selection pressure was used to select and maintain the recombinant yeast. The selected strain showed better production performance than the original strain. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 241-251, 1997.  相似文献   

19.
L Barbour  Y Zhu  W Xiao 《Génome》2000,43(5):910-917
The synthetic lethal screen is a useful method in identifying novel genes functioning in an alternative pathway to the gene of interest. The current synthetic lethal screen protocol in yeast is based on a colony-sectoring assay that allows direct visualization of mutant colonies among a large population by their inability to afford plasmid loss. This method demands an appropriate level of stability of the plasmid carrying the gene of interest. YRp-based plasmids are extremely unstable and complete plasmid loss occurs within a few generations. Consequently, YCp plasmids are the vector of choice for synthetic lethal screens. However, we found that the high-level stability of YCp plasmids resulted in a large number of false positives that must be further characterized. In this study, we attempt to improve the existing synthetic lethal screen protocol by regulating the plasmid stability and copy number. It was found that by placing a yeast centromere sequence under the control of either inducible or constitutive promoters, plasmid stability can be significantly decreased. Hence, altering the conditions under which yeast cells carrying the plasmid PGAL1-CEN4 were cultivated allowed us to develop a method that eliminated virtually 100% of false positives and drastically reduced the time required to carry out a synthetic lethal screen.  相似文献   

20.
Stability of the plasmid pKK223-200 in Escherichia coli JM105 was studied for both free and immobilized cells during continuous culture. The relationship between plasmid copy number, xylanase activity, which was coded for by the plasmid, and growth rate and culture conditions involved complex interactions which determined the plasmid stability. Generally, the plasmid stability was enhanced in cultured immobilized cells compared with free-cell cultures. This stability was associated with modified plasmid copy number, depending on the media used. Hypotheses are presented concerning the different plasmid instability kinetics observed in free-cell cultures which involve the antagonistic effects of plasmid copy number and plasmid presence on the plasmid-bearing/plasmid-free cell growth rate ratio. Both diffusional limitation in carrageenan gel beads, which is described in Theoretical Analysis of Immobilized-Cell Growth, and compartmentalized growth of immobilized cells are proposed to explain plasmid stability in immobilized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号