首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amount of polyphosphate in the intraradical and extraradical hyphae of Gigaspora margarita was estimated from successive extractions with trichloroacetic acid (TCA), EDTA, and phenol-chloroform (PC). In the intraradical hyphae, most of the polyphosphate was present in TCA- and EDTA-soluble (short-chain and long-chain) fractions, whereas most of the polyphosphate in the extraradical hyphae was present in EDTA- and PC-soluble (long-chain and granular) fractions.  相似文献   

2.
Burkholderia species are bacterial soil inhabitants that are capable of interacting with a variety of eukaryotes, in some cases occupying intracellular habitats. Pathogenic and nonpathogenic Burkholderia spp., including B. vietnamiensis, B. cepacia, and B. pseudomallei, were grown on germinating spores of the arbuscular mycorrhizal fungus Gigaspora decipiens. Spore lysis assays revealed that all Burkholderia spp. tested were able to colonize the interior of G. decipiens spores. Amplification of specific DNA sequences and transmission electron microscopy confirmed the intracellular presence of B. vietnamiensis. Twelve percent of all spores were invaded by B. vietnamiensis, with an average of 1.5 × 106 CFU recovered from individual infected spores. Of those spores inoculated with B. pseudomallei, 7% were invaded, with an average of 5.5 × 105 CFU recovered from individual infected spores. Scanning electron and fluorescence microscopy provided insights into the morphology of surfaces of spores and hyphae of G. decipiens and the attachment of bacteria. Burkholderia spp. colonized both hyphae and spores, attaching to surfaces in either an end-on or side-on fashion. Adherence of Burkholderia spp. to eukaryotic surfaces also involved the formation of numerous fibrillar structures.  相似文献   

3.
This article reports the identification of a putative P-transporter operon in the genome of a Burkholderia sp. living in the cytoplasm of the arbuscular mycorrhizal fungus Gigaspora margarita. Its presence suggests that Burkholderia sp. has the potential for P uptake from this environment. This finding raises new questions concerning the importance of intracellular bacteria for mycorrhizal symbiosis.  相似文献   

4.
Spores of vesicular arbuscular mycorrhizal (VAM) fungi contain thousands of nuclei. In order to understand the karyotic structure of a VAM fungus spore, the genetic variation of the first generation of spores from a VAM fungus (Gigaspora margarita) was examined. Spores originating from both single- and multispore inoculations of the species G. margarita were analyzed by M13 minisatellite-primed PCR. In both cases, different fingerprints were obtained from individual spores with few spores exhibiting similar fingerprints. These results can be explained only by a heterokaryotic status of the nuclear population within a spore.  相似文献   

5.
The arbuscular mycorrhizal (AM) fungus Gigaspora margarita harbors a resident population of endosymbiontic Burkholderia in its cytoplasm. Nothing is known about the acquisition of such bacteria and about the molecular bases which allow colonization of the fungus. We wondered whether the intracellular Burkholderia strain possesses genetic determinants involved in colonization of a eukaryotic cell. Using degenerated oligonucleotide primers for vacB, a gene involved in host cell colonization by pathogenic bacteria, an 842 bp DNA fragment was cloned, sequenced, and identified as a part of the vacB gene in Burkholderia sp. The insert was used as a probe to screen a fungal library that, because of the presence of intracellular Burkholderia cells, was also representative of the bacterial genome. The complete nucleotide sequence of vacB and flanking genes was determined. The bacterial origin of this genomic region was established by PCR, using specific vacB primers on DNA from Gigasporaceae that did or did not contain cytoplasmic Burkholderia, as well as on DNA from other bacteria, including free-living Burkholderia. We hypothesize that the vacB gene is part of a new genetic region acquired by a rhizospheric Burkholderia strain, which became able to establish a symbiotic interaction with the AM fungus G. margarita.  相似文献   

6.
The aim of this paper was to understand whether the endobacterium identified as Candidatus Glomeribacter gigasporarum has an effect on the biology of its host, the arbuscular mycorrhizal fungus Gigaspora margarita, through the study of the modifications induced on the fungal proteome and lipid profile. The availability of G. margarita cured spores (i.e. spores that do not contain bacteria), represented a crucial tool to enable the comparison between two fungal homogeneous populations in the presence and the absence of the bacterial components. Our results demonstrate that the endobacterial presence leads to a modulation of fungal protein expression in all the different conditions we tested (quiescent, germinating and strigolactone-elicited germinating spores), and in particular after treatment with a strigolactone analogue. The fungal fatty acid profile resulted to be modified both quantitatively and qualitatively in the absence of endobacteria, being fatty acids less abundant in the cured spores. The results offer one of the first comparative metabolic studies of an AM fungus investigated under different physiological conditions, reveal that endobacteria have an important impact on the host fungal activity, influencing both protein expression and lipid profile, and suggest that the bacterial absence is perceived by G. margarita as a stimulus which activates stress-responsive proteins.  相似文献   

7.
Two filamentous fungi with different phenotypes were isolated from crushed healthy spores or perforated dead spores of the arbuscular mycorrhizal fungus (AMF) Scutellospora castanea. Based on comparative sequence analysis of 5.8S ribosomal DNA and internal transcribed spacer fragments, one isolate, obtained from perforated dead spores only, was assigned to the genus Nectria, and the second, obtained from both healthy and dead spores, was assigned to Leptosphaeria, a genus that also contains pathogens of plants in the Brassicaceae. PCR and randomly amplified polymorphic DNA-PCR analyses, however, did not indicate similarities between pathogens and the isolate. The presence of the two isolates in both healthy spores and perforated dead spores of S. castanea was finally confirmed by transmission electron microscopy by using distinctive characteristics of the isolates and S. castanea. The role of this fungus in S. castanea spores remains unclear, but the results serve as a strong warning that sequences obtained from apparently healthy AMF spores cannot be presumed to be of glomalean origin and that this could present problems for studies on AMF genes.  相似文献   

8.
Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of over 80% of plants in all terrestrial environments. Understanding why AM fungi do not complete their life cycle under free-living conditions has significant implications for the management of one of the world's most important symbioses. We used (13)C-labeled substrates and nuclear magnetic resonance spectroscopy to study carbon fluxes during spore germination and the metabolic pathways by which these fluxes occur in the AM fungus Glomus intraradices. Our results indicate that during asymbiotic growth: (a) sugars are made from stored lipids; (b) trehalose (but not lipid) is synthesized as well as degraded; (c) glucose and fructose, but not mannitol, can be taken up and utilized; (d) dark fixation of CO(2) is substantial; and (e) arginine and other amino acids are synthesized. The labeling patterns are consistent with significant carbon fluxes through gluconeogenesis, the glyoxylate cycle, the tricarboxylic acid cycle, glycolysis, non-photosynthetic one-carbon metabolism, the pentose phosphate pathway, and most or all of the urea cycle. We also report the presence of an unidentified betaine-like compound. Carbon metabolism during asymbiotic growth has features in between those presented by intraradical and extraradical hyphae in the symbiotic state.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae.  相似文献   

10.
High concentrations of heavy metals have been shown to adversely affect the size, diversity, and activity of microbial populations in soil. The aim of this work was to determine how the diversity of arbuscular mycorrhizal (AM) fungi is affected by the addition of sewage-amended sludge containing heavy metals in a long-term experiment. Due to the reduced number of indigenous AM fungal (AMF) propagules in the experimental soils, several host plants with different life cycles were used to multiply indigenous fungi. Six AMF ecotypes were found in the experimental soils, showing consistent differences with regard to their tolerance to the presence of heavy metals. AMF ecotypes ranged from very sensitive to the presence of metals to relatively tolerant to high rates of heavy metals in soil. Total AMF spore numbers decreased with increasing amounts of heavy metals in the soil. However, species richness and diversity as measured by the Shannon-Wiener index increased in soils receiving intermediate rates of sludge contamination but decreased in soils receiving the highest rate of heavy-metal-contaminated sludge. Relative densities of most AMF species were also significantly influenced by soil treatments. Host plant species exerted a selective influence on AMF population size and diversity. We conclude based on the results of this study that size and diversity of AMF populations were modified in metal-polluted soils, even in those with metal concentrations that were below the upper limits accepted by the European Union for agricultural soils.  相似文献   

11.
Spores of the arbuscular mycorrhizal fungi (AMF) Glomus geosporum and Glomus constrictum were harvested from single-spore-derived pot cultures with either Plantago lanceolata or Hieracium pilosella as host plants. PCR-denaturing gradient gel electrophoresis analysis revealed that the bacterial communities associated with the spores depended more on AMF than host plant identity. The composition of the bacterial populations linked to the spores could be predominantly influenced by a specific spore wall composition or AMF exudate rather than by specific root exudates. The majority of the bacterial sequences that were common to both G. geosporum and G. constrictum spores were affiliated with taxonomic groups known to degrade biopolymers (Cellvibrio, Chondromyces, Flexibacter, Lysobacter, and Pseudomonas). Scanning electron microscopy of G. geosporum spores revealed that these bacteria are possibly feeding on the outer hyaline spore layer. The process of maturation and eventual germination of AMF spores might then benefit from the activity of the surface microorganisms degrading the outer hyaline wall layer.  相似文献   

12.
The sequence variability of the ribosomal internal transcribed spacer (ITS) region, which comprises the 5.8 gene and the flanking regions ITS1 and ITS2, was investigated in the arbuscular mycorrhizal fungus Gigaspora margarita. DNA analysis of a multispore preparation and three single spores led to the identification of 11 slightly different sequences (three variants within a single spore), indicating substantial intersporal and intrasporal genetic variability (up to 9% sequence divergence). The sequence variations inside a single spore may be higher than that observed between spores. Even so, primers designed on the ITS1 and ITS2 regions identified Gi. margarita isolates and detected the endophyte during colonization.  相似文献   

13.
14.
Arbuscular mycorrhizal (AM) fungi benefit their host plants by supplying phosphate obtained from the soil. Polyphosphate is thought to act as the key intermediate in this process, but little is currently understood about how polyphosphate is synthesized or translocated within arbuscular mycorrhizas. Glomus sp. strain HR1 was grown with marigold in a mesh bag compartment system, and extraradical hyphae were harvested and fractionated by density gradient centrifugation. Using this approach, three distinct layers were obtained: layers 1 and 2 were composed of amorphous and membranous materials, together with mitochondria, lipid bodies, and electron-opaque bodies, and layer 3 was composed mainly of partially broken hyphae and fragmented cell walls. The polyphosphate kinase/luciferase system, a highly sensitive polyphosphate detection method, enabled the detection of polyphosphate-synthesizing activity in layer 2 in the presence of ATP. This activity was inhibited by vanadate but not by bafilomycin A1 or a protonophore, suggesting that ATP may not energize the reaction through H+-ATPase but may act as a direct substrate in the reaction. This report represents the first demonstration that AM fungi possess polyphosphate-synthesizing activity that is localized in the organelle fraction and not in the cytosol or at the plasma membrane.Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that form symbiotic associations with most land plants (29). These fungi promote the growth of host plants via enhanced uptake of phosphate (Pi) and thus play important roles in the terrestrial phosphorus cycle. In the symbiotic phase, AM fungi take up Pi from soil through an extensive network of extraradical hyphae and rapidly accumulate inorganic polyphosphate (polyP). This accumulation was as rapid as that for a polyP-hyperaccumulating bacterium found in activated sludge (6). PolyP is a linear polymer of three to hundreds of molecules of Pi linked by high-energy phosphoanhydride bonds and has been found across all classes of organisms (19). Although polyP is considered to play a central role in long-distance translocation of Pi in AM fungal associations (4, 10, 30, 31), the translocation mechanism, metabolism, and dynamics in the fungi have not been elucidated due to the difficulty in obtaining sufficient fungal material for analysis.Many enzymes/genes involved in polyP synthesis/metabolism have been identified and characterized in prokaryotes (19). For instance, exopolyphosphatase hydrolyzes the terminal high-energy bonds of polyP, and polyphosphate glucokinase (PPGK) transfers the terminal Pi residue to glucose. Polyphosphate kinase 1 (PPK1) is responsible both for polyP synthesis, using ATP as a phosphoryl donor, and for the reverse ATP-generating reaction. This enzyme is bound to the plasma membrane (18) and has been found in a wide range of bacteria (17). Unlike the case for prokaryotes, knowledge of polyP synthesis/metabolism in eukaryotes remains limited. The first eukaryotic PPK genes, DdPPK1 (32) and DdPPK2 (14), were identified from the social slime mold Dictyostelium discoideum. The products of these genes, as known for bacterial PPK1s, are responsible both for polyP synthesis and for the ATP-generating reaction and have been suggested to be associated with vacuoles or small vesicles (14, 32). Although several homologues of bacterial PPK1 genes have now been found in the genomes of eukaryotic microorganisms (17), yeast Candida humicola is the only organism apart from D. discoideum for which PPK-like activity has been confirmed (22). The model organism Saccharomyces cerevisiae is known to accumulate polyP, to up to 10% of its dry weight (19). A unique polyP synthetic pathway different from those of PPK1 has been proposed for S. cerevisiae based on the observation that vacuolar-type H+-ATPase (V-ATPase)-defective mutants could not accumulate polyP (23). In this hypothetical pathway, Pi would be polymerized by an analogous system (enzyme) of mitochondrial F1-ATPase on the vacuolar membrane, using the proton motive force created by V-ATPase (23). On the other hand, Hothorn et al. (16) demonstrated very recently that vacuolar transporter chaperone 4 (VTC4), a small transmembrane protein associated with the membrane, polymerizes Pi by using the γ-Pi residue of ATP as a phosphoryl donor in S. cerevisiae.More than 2 decades ago, Capaccio and Callow (3) reported the presence of polyP-hydrolyzing, -metabolizing (PPGK), and -synthesizing (PPK-like) activities in the soluble (cytosolic) fractions of the hyphae of the AM fungus Glomus mosseae. Recently, polyP-hydrolyzing activity was found in both the cytosolic and insoluble (membrane) fractions and then characterized (8). PPGK activity has also been confirmed in the cytosolic fraction, although the activity was quite low and hexokinase (ATP-hexose phosphotransferase) activity appeared to dominate in the glucose phosphorylation process (9). PPK-like activity, however, could not be detected in the same fraction (10), and this seems likely because all other prokaryotic (reviewed in reference 17) and eukaryotic (14, 16, 22, 32) polyP-synthesizing enzymes, so far, are associated with membranes. These observations suggest that AM fungi possess a polyP-synthesizing enzyme that is probably associated with membranes and that ATP may be essential in the synthesis as a phosphoryl donor or via H+-ATPase, as suggested by Ogawa et al. (23). In this study, a cell fractionation technique was applied to demonstrate polyP-synthesizing activity in an AM fungus, and then the role of ATP in the synthesis was investigated.  相似文献   

15.
The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of (13)C labeling of germinating spores and extraradical mycelium with (13)C(2)-acetate and (13)C(2)-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle.  相似文献   

16.
Gigaspora rosea is a member of the arbuscular mycorrhizal fungi (AMF; Glomeromycota) and a distant relative of Glomus species that are beneficial to plant growth. To allow for a better understanding of Glomeromycota, we have sequenced the mitochondrial DNA of G. rosea. A comparison with Glomus mitochondrial genomes reveals that Glomeromycota undergo insertion and loss of mitochondrial plasmid-related sequences and exhibit considerable variation in introns. The gene order between the two species is almost completely reshuffled. Furthermore, Gigaspora has fragmented cox1 and rns genes, and an unorthodox initiator tRNA that is tailored to decoding frequent UUG initiation codons. For the fragmented cox1 gene, we provide evidence that its RNA is joined via group I-mediated trans-splicing, whereas rns RNA remains in pieces. According to our model, the two cox1 precursor RNA pieces are brought together by flanking cox1 exon sequences that form a group I intron structure, potentially in conjunction with the nad5 intron 3 sequence. Finally, we present analyses that address the controversial phylogenetic association of Glomeromycota within fungi. According to our results, Glomeromycota are not a separate group of paraphyletic zygomycetes but branch together with Mortierellales, potentially also Harpellales.  相似文献   

17.
18.
 The effect of solution phosphorus (P) concentration upon growth of pregerminated spores of the vesicular-arbuscular mycorrhizal fungus Gigaspora margarita was examined in vitro. P at 1 mM significantly inhibited branching of the primary germ tube. The number of branches and the total hyphal length were both significantly inhibited at 10 mM P. In addition, germinated spores exposed to exudates produced by Ri T-DNA-transformed roots of Daucus carota L. grown in the presence of P showed significantly less hyphal branching than those exposed to exudates produced by P-stressed roots. These phenomena could contribute to the observed inhibition of mycorrhiza formation by high P. Accepted: 31 July 1996  相似文献   

19.
20.
Trichoderma harzianum is an effective biocontrol agent against several fungal soilborne plant pathogens. However, possible adverse effects of this fungus on arbuscular mycorrhizal fungi might be a drawback in its use in plant protection. The objective of the present work was to examine the interaction between Glomus intraradices and T. harzianum in soil. The use of a compartmented growth system with root-free soil compartments enabled us to study fungal interactions without the interfering effects of roots. Growth of the fungi was monitored by measuring hyphal length and population densities, while specific fatty acid signatures were used as indicators of living fungal biomass. Hyphal 33P transport and β-glucuronidase (GUS) activity were used to monitor activity of G. intraradices and a GUS-transformed strain of T. harzianum, respectively. As growth and metabolism of T. harzianum are requirements for antagonism, the impact of wheat bran, added as an organic nutrient source for T. harzianum, was investigated. The presence of T. harzianum in root-free soil reduced root colonization by G. intraradices. The external hyphal length density of G. intraradices was reduced by the presence of T. harzianum in combination with wheat bran, but the living hyphal biomass, measured as the content of a membrane fatty acid, was not reduced. Hyphal 33P transport by G. intraradices also was not affected by T. harzianum. This suggests that T. harzianum exploited the dead mycelium but not the living biomass of G. intraradices. The presence of external mycelium of G. intraradices suppressed T. harzianum population development and GUS activity. Stimulation of the hyphal biomass of G. intraradices by organic amendment suggests that nutrient competition is a likely means of interaction. In conclusion, it seemed that growth of and phosphorus uptake by the external mycelium of G. intraradices were not affected by the antagonistic fungus T. harzianum; in contrast, T. harzianum was adversely affected by G. intraradices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号