首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We studied phosphopeptidomannans (PPMs) of two Saccharomyces cerevisiae NCYC 625 strains (S. diastaticus): a wild type strain grown aerobically, anaerobically, and in the presence of antimycin and a [rho0] mutant grown aerobically and anaerobically. The aerobic wild-type cultures were highly flocculent, but all others were weakly flocculent. Ligands implicated in flocculation of mutants or antimycin-treated cells were not aggregated as much by concanavalin A as were those of the wild type. The [rho0] mutants and antimycin-treated cells differ from the wild type in PPM composition and invertase, acid phosphatase, and glucoamylase activities. PPMs extracted from different cells differ in the protein but not in the glycosidic moiety. The PPMs were less stable in mitochondrion-deficient cells than in wild-type cells grown aerobically, and this difference may be attributable to defective mitochondrial function during cell wall synthesis. The reduced flocculation of cells grown in the presence of antimycin, under anaerobiosis, or carrying a [rho0] mutation may be the consequence of alterations of PPM structures which are the ligands of lectins, both involved in this cell-cell recognition phenomenon. These respiratory chain alterations also affect peripheral, biologically active glycoproteins such as extracellular enzymes and peripheral PPMs.  相似文献   

2.
1. During anaerobic glucose de-repression the respiration rate of whole cells of Saccharomyces carlsbergensis remained constant and was insensitive to antimycin A but was inhibited by 30% by KCN. Aeration of cells for 1 h led to increased respiration rate which was inhibited by 80% by antimycin A or KCN. 2. Homogenates were prepared from sphaeroplasts of anaerobically grown, glucose de-repressed cells and the distribution of marker enzymes was investigated after zonal centrifugation on sucrose gradients containing MgCl(2). These homogenates contained no detectable cytochrome c oxidase or catalase activity. The complex density distributions of NADH- and NADPH-cytochrome c oxidoreductases and adenosine triphosphatase(s) [ATPase(s)] were very different from those of anaerobically grown, glucose-repressed cells. 3. The specific activity of total ATPase was lowered and sensitivity to oligomycin decreased from 58 to 7% during de-repression. 4. Cytochrome c oxidase and catalase activities were detectable in homogenates of cells after 10min aeration. Zonal centrifugation indicated complex, broad sedimentable distributions of all enzyme activities assayed; the peaks of activity were at 1.27g/ml. 5. Centrifugation of homogenates of cells adapted for 30min and 3 h indicated a shift of density of the major sedimentable peak from 1.25g/ml (30min) to 1.235g/ml (3 h). After 30min adaptation a minor zone of oligomycin-sensitive ATPase and 15% of the total cytochrome c oxidase activities were detected at rho=1.12g/l; these particles together with those of higher density containing cytochrome c oxidase, ATPase and NADH-cytochrome c oxidoreductase activities were all sedimented at 10(5)g-min. 6. Electron microscopy indicated that the mitochondria-like structures of anaerobically grown, glucose-de-repressed cells were similar to those of repressed cells. After 10min of respiratory adaptation highly organized mitochondria were evident which resembled the condensed forms of mitochondria of aerobically grown, glucose-de-repressed cells. High-density zonal fractions of homogenates of cells after adaptation also contained numerous electron-dense vesicles 0.05-0.2mum in diameter. 7. The possibility that the ;promitochondria' of anaerobically grown cells may not be the direct structural precursors of fully functional mitochondria is discussed.  相似文献   

3.
光合菌SDH2 hupT基因的突变与吸氢酶表达   总被引:1,自引:0,他引:1  
利用三亲本杂交将自杀质粒pSE8引入光合细菌Rodobacter sp.SDH20菌株,经过质粒上插入了kan^R基因的hupT基因片段与受体基因组同源双交换,构建成hupT插入突变株SDHT1和SDHT2。  相似文献   

4.
5.
Summary The yeast cellsSaccharomyces cerevisiae grown up to stationary phase under either anaerobic conditions, or aerobic conditions in the presence of a respiratory inhibitor, antimycin A, had distinctive giant mitochondrial nucleoids (mt-nucleoids) (apparent diameter 0.6–0.9 m) in contrast with the small mt-nucleoids (apparent diameter 0.2–0.4 m) in respiratory-sufficient cells grown aerobically, as revealed by DAPI-fluorescence microscopy. The cytoplasmic respiratory-deficient cells (rho cells), which were induced by treatment of wild-type cells with ethidium bromide, showed both giant and small mt-nucleoids of irregular size. In order to examine the structural and functional differences between giant and small mt-nucleoids, the former were successfully isolated from spheroplasts of three different cells by differential centrifugation and centrifugation on a discontinuous sucrose gradient. The isolated giant mt-nucleoids were intact in the morphology and were free of significant contamination by nuclear chromatin. The number of protein components involved in each of three different giant mt-nucleoids was similar to the number in small mt-nucleoids from aerobically grown cells, though a few noticeable differences were also recognized. DNA-binding proteins with molecular masses of 67 kDa, 52 kDa, 50 kDa, 38 kDa, 26 kDa, and 20 kDa were the main components of small mt-nucleoids from aerobically grown cells as detected by chromatography on native DNA-cellulose. In contrast, the 67 kDa and 52 kDa proteins were hardly detected in corresponding fractions of giant mt-nucleoids from anaerobically grown cells and from rho cells grown aerobically. On the other hand, mt-nucleoids from aerobically grown cells in the presence of antimycin A seemed to lack the 67 kDa protein but to have a small amount of the 52 kDa protein. This is the first demonstration of the variance of protein species involved in yeast mt-nucleoids according to the respiratory activity of mitochondria.  相似文献   

6.
After extraction from whole cells, and purification by gel filtration, the chemical composition and molecular mass estimation of the cell-wall phosphopeptidomannan (PPM) showed no significant difference respectively between flocculent, weakly, very weakly and non-flocculent Kluyveromyces lactis yeast strains. However, when PPMs were tested as ligands of a lectin, extracted from the flocculent strain, the PPM isolated from the flocculent and weakly flocculent strain were recognized to a higher degree than those isolated from the non and very weakly flocculent strains. Acetolysis of PPM extracted from the four strains produced five oligosaccharide fractions corresponding to mono-, di-, tri-, penta-and hexa-saccharides. The flocculent strain was characterised by a high content of di-and penta-saccharides. The 1H NMR analysis of the oligosaccharides demonstrated that the flocculent strain contained equivalent levels of the two mannobioses: Man( 1 → 2)Man and Man( 1 → 3)Man and of the two mannotrioses Man( 1 → 2)Man( 1 → 2)Man and Man( 1 → 3)Man( 1 → 2)Man. In contrast, the non-flocculent and the very weakly flocculent strains contained a single type of mannobiose Man( 1 → 2)Man and one type of mannotriose Man( 1 → 2)Man( 1 → 2)Man.  相似文献   

7.
Studies of mitochondrial biogenesis in yeast have been hampered by a lack of suitable membrane markers in anaerobically grown cells subsequently grown in air. Cytochrome c peroxidase activity and subcellular location was studied to determine whether it would be a useful marker for an analysis of mitochondrial formation. Cytochemical tests revealed enzyme reaction product on all mitochondrial membranes in aerobically grown wild-type cells. Anaerobically grown wild-type and all petite cultures contained cytochrome c peroxidase cytochemical reaction deposits on abundant cytoplasmic membranes and on the few mitochondrial profiles which also were seen in the electron photomicrographs. Biochemical studies corroborated the cytochemistry because mitochondrial fractions were greatly enriched in cytochrome c peroxidase activity for aerobically grown wild-type cultures, but petite and anaerobically grown wild-type cultures showed higher enzyme activities in supernatant fractions than was present in the corresponding particulate fractions after differential centrifugation. Evidence from low-temperature microspectroscopy, spectrophotometric assays of mitochondrial enzyme activities, and electron microscopy showed mitochondrial formation during the time required for preparation and lysis of spheroplasts from anaerobically grown cultures. The data were interpreted as indicating that cytochrome c peroxidase was an oxygen-inducible enzyme, and that there was a developmental relationship between enzyme-reactive membranes of mitochondria and cytoplasm during the period of respiratory adaptation.  相似文献   

8.
Torulopsis pintolopesii is an indigenous yeast that colonizes the secreting epithelia in the stomachs of mice and rats. A wild-type strain of this microbe was isolated and identified. To attempt to learn characteristics of the yeast that are advantageous to it in colonizing its natural habitat in vivo, we examined some aspects of its nutrition and energy-yielding metabolism and some environmental conditions that influence its growth in vitro. The yeast appeared to be limited in the compounds it can utilize as carbon and nitrogen sources. It grew best at 37°C and did not grow at 23 or 43°C. It grew optimally at neutral pH but could grow aerobically at pH values as low as 2.0 and anaerobically at pH values as low as 3.4. As assessed by measurements of growth rates and yield coefficients, it grew better aerobically than anaerobically. When grown aerobically, it had a cyanide-sensitive system for taking up O2 and tested positively for cytochrome c oxidase activity. A petite mutant strain isolated from the wild-type strain had a growth rate and yield coefficient when incubated aerobically that were essentially the same as those of the wild-type parent grown anaerobically. Likewise similar to the wild-type parent grown anaerobically, the petite strain, though incubated aerobically, did not take up O2. Yeast-free mice associated with either the wild-type or the petite mutant strain were colonized at essentially the same rates and to similar final population levels by both strains. The yeast's capacity to respire may be of little advantage to it in its natural environment. By contrast, its abilities to grow best at 37°C and to grow at low pH values are undoubtedly advantageous characteristics in this respect. The limitations in its carbon and nitrogen nutrition are difficult to evaluate as ecological factors in its colonization of the natural habitat.  相似文献   

9.
The lectin-like theory suggest that yeast flocculation is mediated by an aggregating lectinic factor. In this study we isolated an agglutinating factor, which corresponds to lectin, from whole cells by treating the flocculent wild-type Saccharomyces cerevisiae NCYC 625 strain and its weakly flocculent mutant [rho degrees ] with EDTA and two non-ionic surfactants (Hecameg and HTAC). The dialysed crude extracts obtained in this way agglutinated erythrocytes and this hemagglutination was specifically inhibited by mannose and mannose derivatives. However, SDS-PAGE profiles showed that the three reagents had different effects on the yeast cells. The non-ionic surfactants appeared to be the most efficient, as their extracts possessed the highest specific agglutinating activity. The products released by the wild-type strain presented a higher specific agglutinating activity than those released by the [rho degrees ] mutant. Purification of the agglutinating factor from extracts of both strains by affinity chromatography revealed two active bands of relative mass of 26 and 47 kDa on SDS-PAGE. Mass spectrometry analysis by MALDI-TOF, identified a 26 kDa band as the triose phosphate isomerase (TPI) whereas a 47 kDa band was identical to enolase. Edman degradation showed that the N-terminal sequences of these proteins were similar to TPI and enolase, respectively. The difference in the flocculation behaviour of the two strains is due to changes in the protein composition of the cell wall and in the protein structure involved in cell-cell recognition.  相似文献   

10.
Torulopsis pintolopesii is an indigenous yeast that colonizes the secreting epithelia in the stomachs of mice and rats. A wild-type strain of this microbe was isolated and identified. To attempt to learn characteristics of the yeast that are advantageous to it in colonizing its natural habitat in vivo, we examined some aspects of its nutrition and energy-yielding metabolism and some environmental conditions that influence its growth in vitro. The yeast appeared to be limited in the compounds it can utilize as carbon and nitrogen sources. It grew best at 37 degrees C and did not grow at 23 or 43 degrees C. It grew optimally at neutral pH but could grow aerobically at pH values as low as 2.0 and anaerobically at pH values as low as 3.4. As assessed by measurements of growth rates and yield coefficients, it grew better aerobically than anaerobically. When grown aerobically, it had a cyanide-sensitive system for taking up O(2) and tested positively for cytochrome c oxidase activity. A petite mutant strain isolated from the wild-type strain had a growth rate and yield coefficient when incubated aerobically that were essentially the same as those of the wild-type parent grown anaerobically. Likewise similar to the wild-type parent grown anaerobically, the petite strain, though incubated aerobically, did not take up O(2). Yeast-free mice associated with either the wild-type or the petite mutant strain were colonized at essentially the same rates and to similar final population levels by both strains. The yeast's capacity to respire may be of little advantage to it in its natural environment. By contrast, its abilities to grow best at 37 degrees C and to grow at low pH values are undoubtedly advantageous characteristics in this respect. The limitations in its carbon and nitrogen nutrition are difficult to evaluate as ecological factors in its colonization of the natural habitat.  相似文献   

11.
Cells of Rhodospirillum rubrum were grown photoorganotrophically and chemoorganotrophically and then starved for organic carbon and combined nitrogen under four conditions: anaerobically in the light and dark and aerobically in the light and dark. Illumination prolonged viability and suppressed the net degradation of cell material of phototrophically grown cells, but had no effect on chemotrophically grown cells that did not contain bacteriochlorophyll. The half-life survival times of carbohydrate-rich phototrophically grown cells during starvation anaerobically or aerobically in the light were 17 and 14.5 days, respectively. The values for starvation aerobically and anaerobically in the dark were 3 and 0.5 days, respectively. Chemotrophically grown cells had half-life survival times of 3 and 4 days during starvation aerobically in the light and dark, respectively, and 0.8 day during starvation anaerobically in the light or dark. Of all cell constituents examined, carbohydrate was most extensively degraded during starvation, although the rate of degradation was slowest for phototrophically grown cells starved anaerobically in the light. Phototrophically grown cells containing poly-beta-hydroxybutyrate as carbon reserve were less able to survive starvation anaerobically in the light than were carbohydrate-rich cells starved under comparable conditions. Light intensity had a significant effect on viability of phototrophically grown cells starving anaerobically. At light intensities of 320 to 650 lx, the half-life survival times were 17 to 24 days. At 2,950 to 10,500 lx, the survival times decreased to 1.5 to 5.5 days. The kinetics of cell death correlated well with the rate of loss of cell mass of starving cells. However, the cause of death could not be attributed to degradation of any specific cell component.  相似文献   

12.
13.
H+-K+-exchange via the Trk-like system of K+ accumulation takes place in anaerobically grown S. typhimurium LT-2 with stable ratio of DCC-sensitive ionic fluxes, equal to 2H+ of a cell for one K+ of the medium. This exchange is now observed in the mutant S. typhimurium TH-31 with unfunctional H+-ATPase. H+-K+-exchange in aerobically grown S. typhimurium LT-2 has unstable ratio of ionic fluxes. The rate of K+ uptake in anaerobically grown bacteria is higher than that in the aerobically grown ones. Q10 is about 1.8 both for H+ transfer and K+ uptake in anaerobically grown bacteria, but it is 1.7 and 0.9 respectively in the aerobically grown ones. Delta psi is not changed by different temperatures both in anaerobically and aerobically grown bacteria. The distribution of K+ in anaerobically grown bacteria is higher than 10(3) and the potassium equilibrium potential is much higher than the measured delta psi. In aerobically grown bacteria the distribution of K+ is in good conformity with the measured delta psi. H+ and K+ transport in anaerobically grown cells is likely to proceed by the same mechanism, which includes H+-ATPase and the Trk-like system. In aerobically grown bacteria these transport systems work separately, and the Trk-like system as K+-ionophore serving for K+ uptake across the electrical field on the membrane.  相似文献   

14.
1. Iodoacetate and fluoride did not prevent the development of respiration in aerobically grown yeast. 2. The effect of dinitrophenol suggested that phosphorylation developed simultaneously with respiration in anaerobically grown yeast, but the effect of oligomycin suggested that the phosphorylation and oxidation were not tightly coupled. 3. Inhibitors of electron transport showed that both the respiratory peak and the subsequent respiration were cyanide-sensitive, but the peak respiration was insensitive to antimycin. 4. Of the inhibitors of protein or RNA synthesis tested, only p-fluorophenylalanine inhibited the development of respiration. The results are not consistent with a new synthesis of mitochondria. 5. 2-Phenylethanol inhibited the development of respiration in anaerobically grown yeast and also yeast growth. Other inhibitors of DNA synthesis had no effect on the development of respiration. 6. The relevance of the results to mitochondrial morphogenesis is discussed.  相似文献   

15.
Cell-free extracts of facultatively anaerobic, sulfur-dependent archaebacteria Acidianus infernus (DSM 3191), and Acidianus brierleyi (DSM 1651) were examine by two-dimensional gel electrophoresis. 56 out of 250 protein spots were induced in anaerobically grown cells of A. infernus compared with 57 out of 251 in aerobically grown cells. In aerobically grown cells of A. brierleyi 62 out of 160 spots were induced, compared with 84 out of 182 in anaerobically grown cells. Changes in the protein patterns of both species were not comparable.  相似文献   

16.
AIMS: To identify the nutrients that can trigger the loss of flocculation under growth conditions in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. Yeast growth with metabolizable carbon sources (glucose, fructose, galactose, maltose or sucrose) at 2% (w/v), induced the loss of flocculation in yeast that had previously been allowed to flocculate. The yeast remained flocculent when transferred to a medium containing the required nutrients for yeast growth and a sole nonmetabolizable carbon source (lactose). Transfer of flocculent yeast into a growth medium with ethanol (4% v/v), as the sole carbon source did not induce the loss of flocculation. Even the addition of glucose (2% w/v) or glucose and antimycin A (0.1 mg l(-1)) to this culture did not bring about loss of flocculation. Cycloheximide addition (15 mg l(-1)) to glucose-growing cells stopped flocculation loss. CONCLUSIONS: Carbohydrates were the nutrients responsible for stimulating the loss of flocculation in flocculent yeast cells transferred to growing conditions. The glucose-induced loss of flocculation required de novo protein synthesis. Ethanol prevented glucose-induced loss of flocculation. This protective effect of ethanol was independent of the respiratory function of the yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients in the control of the flocculation cycle in NewFlo phenotype yeast strains.  相似文献   

17.
A denitrifying mutant of Bacillus stearothermophilus NCA 2184, strain 2184-D, was used to explore the development of nitrate respiration in relation to oxygen respiration. Aerobically grown wild-type cultures could acquire the ability to use nitrate as a result of selection of nitrate-respiring mutants by the presence of nitrate and a reduced oxygen tension. Fluctuation analysis has revealed that the frequency of occurrence of the nitrate-respiring mutant is about 7.5 x 10(-8) per bacterium per generation. Nitrate reductase and nitrite reductase appeared to be induced sequentially in strain 2184-D by the addition of nitrate. The formation of both of these enzymes was repressed by oxygen so that cells grown aerobically with nitrate possessed a low basal level of nitrate reducatase and exhibited no denitrification. The rate of synthesis of nitrate reductase increased quickly after addition of nitrate and removal of oxygen. It then declined to a lower steady-state level. Cells grown anaerobically with nitrate retained approximately 30 to 40% of the respiratory activity of aerobically grown cells. Aeration of anaerobically grown cells in the presence of amino acids increased the respiratory activity to normal aerobic levels. This aeration promoted rapid degradation of the existing nitrate reductase with or without the added amino acids.  相似文献   

18.
Under anoxic conditions, the Escherichia coli oxygen sensor FNR (fumarate nitrate reductase regulator) is in the active state and contains a [4Fe-4S] cluster. Oxygen converts [4Fe-4S]FNR to inactive [2Fe-2S]FNR. After prolonged exposure to air in vitro, apoFNR lacking a Fe-S cluster is formed. ApoFNR can be differentiated from Fe-S-containing forms by the accessibility of the five Cys thiol residues, four of which serve as ligands for the Fe-S cluster. The presence of apoFNR in aerobically and anaerobically grown E. coli was analyzed in situ using thiol reagents. In anaerobically and aerobically grown cells, the membrane-permeable monobromobimane labeled one to two and four Cys residues, respectively; the same labeling pattern was found with impermeable thiol reagents after cell permeabilization. Alkylation of FNR in aerobic bacteria and counting the labeled residues by mass spectrometry showed a form of FNR with five accessible Cys residues, corresponding to apoFNR with all Cys residues in the thiol state. Therefore, aerobically growing cells contain apoFNR, whereas a significant amount of Fe-S-containing FNR was not detected under these conditions. Exposure of anaerobic bacteria to oxygen caused conversion of Fe-S-containing FNR to apoFNR within 6 min. ApoFNR from aerobic bacteria contained no disulfide, in contrast to apoFNR formed in vitro by air inactivation, and all Cys residues were in the thiol form.  相似文献   

19.
Denitrification by Paracoccus denitrificans and Pseudomonas aeruginosa was studied using quadrupole membrane-inlet mass spectrometry to measure simultaneously and continuously dissolved gases. Evidence was provided for aerobic denitrification by both species: in the presence of O2, N2O production increased in Pa. denitrificans, while that of N2 decreased; with Ps. aeruginosa, the concentrations of both N2 and N2O increased on introducing O2 into the gas phase. Disappearance of NO-3 was monitored in anaerobically and aerobically grown cells which were maintained either anaerobically or aerobically: the rate and extent of NO-3 utilization by both species depended on growth and maintenance conditions. The initial rate of disappearance was most rapid under completely anaerobic conditions, and lowest rates occurred when cells were grown anaerobically and maintained aerobically. In nitrogen balance experiments both species converted over 87% of the added NO-3 to N2 and N2O under both anaerobic and aerobic maintenance conditions.  相似文献   

20.
A class of mutants of Ustilago maydis selected on a fungitoxic oxathiin lack of antimycin A-tolerant respiratory system which is present in wild-type cells. This system provides, directly or indirectly, for considerable resistance to antimycin A because growth of mutant cells lacking the system is much more sensitive to the antibiotic than that of the wild type. Antimycin A-sensitive O(2) uptake and growth is found in half of the progeny from crosses of mutant to wild type. All antimycin A-sensitive segregants are somewhat more resistant to oxathiins than the antimycin A-resistant segregants. The respiration of the mutant is strongly inhibited by cyanide and azide at concentrations which stimulate respiration of the wild type. Respiration of both mutant and wild type is about equally inhibited by rotenone. It appears that the mutation alters some component of the respiratory system located between the rotenone inhibition site and the antimycin A inhibition site that permits shift of electron transport to an alternate terminal oxidase when the normal electron transport pathway is blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号