首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medicago sativa L., alfalfa, is the most known plant species within the Medicago genus. The plant has been extensively studied for its content of saponins, mainly consisting of triterpene glycosides of medicagenic acid, possessing several biological properties including a biocidal activity on different soil microorganisms. Phytoparasitic nematodes are responsible for heavy economic damages to numerous agricultural crops and, due to their large distribution, they are among the most difficult crop pests to control. Attention on environmental safety and human and animal health has led to the progressive dismission of many synthetic formulations for the control of those pests and to the search of alternative strategies, including the use of natural metabolites from plants. Saponins from M. sativa may be good candidates for natural nematicide formulations, as in our in vitro studies the saponin mixtures from M. sativa tissues have been found effective in vitro against the virus-vector nematode Xiphinema index, the root-knot nematode Meloidogyne incognita and the potato cyst parasite, Globodera rostochiensis. A structure–activity relationship among saponins and related prosapogenins and sapogenin, respectively, has also been analyzed. The nematicidal efficacy differed among the three assayed nematode species, G. rostochiensis being the most susceptible to the active compounds from alfalfa. The in vitro results were also confirmed by experiments in potting mixes infested by M. incognita or G. rostochiensis and amended with dry top and root material from M. sativa, and in field trials on M. incognita and carrot cyst nematode Heterodera carotae with M. sativa pelleted meal. All amendments reduced root and soil population densities of target nematode species compared to non-treated and chemical controls, with a general improvement of plant growth and yield performances.  相似文献   

2.
Seaweed concentrate (SWC), prepared fromEcklonia maxima, when applied as a soil drench to tomato seedlings, significantly increased plant growth and reduced infestation byMeloidogyne incognita. Foliar applied SWC had little effect on plant growth and increased nematode galling. Ashing SWC reduced the suppressive effect on nematode infestation. In anin vitro experiment, SWC lessened infestation of root-knot nematodes on excised roots of a susceptible cultivar of tomato. Application of the same concentrations of SWC to a nematode-resistant cultivar increased the number of egg masses.  相似文献   

3.
Talc based formulations of two antagonistic fungi, Acremonium strictum W. Gams and Aspergillus terreus Thom were tested separately and together for their ability to suppress the development of root-knot disease of tomato caused by the root-knot nematode, Meloidogyne incognita Kofoid & White in two consecutive trials (2007–08). Tomato seedlings were each inoculated with M. incognita at 2 infective second stage juveniles /g of soil. M. incognita caused up to 48% reduction in plant growth parameters compared to un-inoculated control. Control efficacy achieved by combined soil application of both fungi, in terms of galls/root system and soil population/50 ml of soil, was 66 and 69% respectively at 60 days of inoculation compared to control. Soil application by individual fungus did not achieve as much effectiveness as the biocontrol agents applied together. The combined treatment was found to have antagonistic effect on M. incognita development and increased plant vigor. Incorporation of fine powder of chickpea pod waste with talc powder was beneficial in providing additional nutrients to both plant and biocontrol agents and increased the activity of the nematophagous fungi in soil. A. strictum and A. terreus were successfully established in the rhizosphere of tomato plants up to the termination of the experiment.  相似文献   

4.
Culture filtrates of selected soil fungi, namely Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Fusarium oxysporum, Penicillium vermiculatum and Rhizopus nigricans exhibited variable response to egg hatching and mortality of the root-knot nematode, Meloidogyne incognita. Higher concentrations of the culture filtrates of all the fungi inhibited egg hatching and proved to be toxic to the juveniles of M. incognita. In addition, development of the gall and multiplication of M. incognita were also found adversely affected in varying degrees on all the plants of Vigna radiata treated with the filtrates. The culture filtrate of A. niger showed highest toxicity to the nematode than those of any other fungus tested. Soil drench application of the culture filtrates gave better seedling growth and least nematode multiplication in comparison to seed soaking treatment.  相似文献   

5.
Insunza  V.  Alström  S.  Eriksson  K. B. 《Plant and Soil》2002,241(2):271-278
Trichodorid nematodes (Nematoda: Trichodoridae) are vectors of tobacco rattle virus (TRV), one of the causal agents of spraing disease in potato. Root bacteria from nematicidal plants and their control potential against Trichodoridae were the focus of this study. Bacteria isolated from the roots of 12 nematicidal plants and potato were characterized for their production of hydrolytic enzymes, hydrogen cyanide, phenol oxidation ability and antifungal activity towards the potato pathogen Rhizoctonia solani. Based on these functional traits, bacteria isolates were selected and tested in greenhouse conditions on potato (cv. Saturna) for their effect on plant growth, and screened for nematicidal activity against Paratrichodorus pachydermus and Trichodorus primitivus in naturally infested soil. Sixteen bacteria isolates out of 44 reduced nematode densities by 50–100%. Nine selected isolated were further tested by bacterizing potato tubers (cv. King Edward) which were planted in a trichodorid and TRV-infested soil. Four bacterial isolates consistently reduced nematode densities (by 56.7–74.4%) with no visual negative effect on plant growth. These isolates were tentatively identified, partly by fatty acid methyl ester (FAME) analysis as: Stenotrophomonas maltophilia, Bacillus mycoides, Pseudomonas sp., and one unidentified bacterium. The isolates originated from potato, Plantago major, Thymus vulgaris and Asparagus officinalis, respectively. Two Pseudomonas isolates obtained from Zinnia elegans and selected for their strong nematicidal activity in soil screening tests, did not reduce the nematode population when tested on potato. It is concluded that plants releasing nematicidal compounds may harbour nematode-antagonistic bacteria as well.  相似文献   

6.
Kokalis–Burelle  N.  Vavrina  C. S.  Rosskopf  E. N.  Shelby  R. A. 《Plant and Soil》2002,238(2):257-266
Field trials were performed in Florida to evaluate tomato and pepper transplants amended with formulations of several plant growth-promoting rhizobacteria (PGPR) in a production system that included soil solarization. Transplants grown in five different formulations of PGPR were planted into plots treated by soil solarization, MeBr fumigation, or untreated soil. Treatments were assessed for incidence of several naturally occurring tomato and pepper pathogens including root-knot nematode (Meloidogyne incognita) and species of Pythium, Phytophthora, and Fusarium. Highly significant increases in tomato and pepper transplant growth occurred in response to most formulations of PGPR tested. Transplant vigor and survival in the field were improved by PGPR treatments in both tomato and pepper. Diseases of tomato caused by root-knot nematodes, Fusarium, Phytophthora, and Pythium were not affected by PGPR treatments. PGPR formulation LS261 reduced numbers of root-knot nematode galls on pepper while pepper root condition was improved with formulations LS213, LS256 and LS261. Individual PGPR strains affected the number of Pythium colonies isolated from pepper roots, but did not affect isolation of Pythium from tomato roots. Greater numbers of colonies of Pythium were isolated from pepper roots in the MeBr treatment and fewest in the solarization treatment. Numbers of colony forming units of Fusarium were significantly higher in the untreated soil than in MeBr fumigated or solarized soil with no effect of PGPR on isolation of Fusarium from either crop. Incidence of wilt symptoms on tomato was significantly lower in MeBr treated plots and highest in the untreated plots. Yield of extra large tomato fruit and total yield increased with PGPR formulation LS256. Yield of pepper was increased with formulations LS255 and LS256. Solarization combined with LS256 on pepper produced yields comparable to MeBr.  相似文献   

7.
Abstract

The aim of the present study was to formulate six different plant seed oils namely canola, cotton, flax, olive, sesame and soybean as emulsifiable concentrates. The composition of the formulation comprises at least one organic solvent, one surfactant and one plant oil. Physico-chemical properties of the formulated oils (emulsion stability test, cold stability and heat stability tests) were measured. The successfully emulsified oils were evaluated for nematicidal activity against Meloidogyne incognita infecting tomato plants under greenhouse conditions. Emulsified canola oil proved to be the most effective oil as a protectant against M. incognita infection to tomatoes followed by soybean, cotton, flax and sesame oil. In addition, employing a high rate of the tested emulsified oils gave higher activity in suppressing nematodes both in the soil and in tomato roots than using a low rate. Moreover, all tested formulated oils at both rates of application had no adverse effect on the growth of tomato plants except sesame oil which significantly decreased the shoot length when compared to the control. The prepared plant oils might be used as potential sources for sustainable eco-friendly botanical nematicides to protect plants from nematode attack.  相似文献   

8.
The interaction among Glomus intraradices, Meloidogyne incognita, and cantaloupe was studied at three soil phosphorus (P) levels in a greenhouse. All plants grew poorly in soil not amended with P, regardless of mycorrhizal or nematode status. In soil amended with 50 μg P /g soil, M. incognita suppressed the growth of nonmycorrhizal plants by 84%. In contrast, growth of mycorrhizal plants inoculated with M. incognita was retarded by only 21%. A similar trend occurred in plants grown in soil with 100 μg P /g soil. Mycorrhizal infection had no effect on the degree of root-knot gall formation and did not affect the number of nematode eggs per egg mass. Mineral levels in plant shoots generally declined as soil P levels increased and were not significantly influenced by G. intraradices or M. incognita.  相似文献   

9.
Use of chemical activator for the management of root-knot disease in medicinal and aromatic plants can become an attractive alternative to traditionally used nematicides. Large numbers of chemical molecules are present in the plants and are involved in the induction of different types of proteins. The purpose of our research study is to explore the possibilities of resistance factors that are inherent in the plant by treating them with few chemical activators to activate against root-knot nematode infection. Efforts were made to achieve a satisfactory suppression of root-knot nematode, Meloidogyne incognita, a serious menace to successful cultivation of chamomile, Matricaria recutita L. Rauch (syn. Matricaria chamomilla L. Fain. Asteraceae) causing root-knot disease through use of different chemical activators. Here we examined selected groups of resistance activator viz. Isonicotinamide, 2-chloronicotinic acid, 5-nitrosalicylic acid, 4-chlorosalicylic acid, DL-2 aminobutyric acid, 2-aminobutyric acid, O-acetylsalicylic acid, 4-amino salicylic acid, salicylic acid and these were used as soil drench using 3 week old seedlings transplanted to root-knot nematode infested pots. Maximum reduction in root-knot severity and nematode population occurred with 4-chlorosalicylic acid, O-acetyl salicylic acid, 2-chloronicotinic acid and gave significant flower yield advantages. Present experiment suggests a strong possibility of these activators in integrated management for protection against plant parasitic nematodes.  相似文献   

10.
The nematicidal activity of dried ground seeds of Ammi majus, Matricaria chamomilla, Ricinus communis, Brassica alba, B. oleracea, Peganum harmala, Solanum nigrum, Raphanus sativus and Eucalyptus sp. was assessed against the root-knot nematode, Meloidogyne incognita, infecting tomato in a glasshouse. The powdered seeds of the tested plants were incorporated into the soil at the rate of 5 g/kg and their nematicidal activity was compared with that of the synthetic nematicide carbofuran at the rate of 0.01 g a.i./kg. The effects of the treatments on the growth of tomato were also examined. The populations of M. incognita in the soil and root galling of tomato were significantly suppressed by the powdered seeds of all the plant species tested, with the greatest reduction occurring in soil amended with M. chamomilla, followed by soil treated with powdered seeds of A. majus, S. nigrum, R. communis and Eucalyptus sp. The efficacy of B. oleracea, B. alba, M. chamomilla and R. communis in reducing the number of J2 in the soil was similar to that of carbofuran. All amendments, except powdered seeds of M. chamomilla and A. majus significantly increased shoot length compared to the untreated inoculated plants. Shoot weight was significantly increased in soil amended with powdered seeds of B. oleracea, B. alba, R. communis, P. harmala and S. nigrum, but not in soil amended with the other seed powders when compared with untreated inoculated soil. Significant increases in root length occurred in pots amended with seed powder of B. alba, R. communis and Eucalyptus and in root weight for P. harmala. None of the tested dried seeds was phytotoxic to tomato plants at the applied rate.  相似文献   

11.

Leaf extracts of noxious weeds such as Solanum xanthocarpum and Argemone maxicana were used as bare-root dip treatment for the management of three important plant-parasitic nematodes, Meloidogyne incognita, Rotylenchulus reniformis and Tylenchorhynchus brassicae infesting tomato (Lycopersicon esculantum ) and chilli (Capsicum annuum) plants. Significant reduction was observed in the root-knot development caused by M. incognita, multiplication of nematode populations of R. reniformis and T. brassicae on both the test plants. Larval penetration of second stage juveniles of M. incognita was also inhibited at various concentrations of leaf extracts and dip durations. Leaf extract of S. xanthocarpum caused relatively more inhibition in root-knot development in case of root-knot nematode, nematode multiplication of reniform and stunt nematodes than that of A. maxicana. Because of dip treatment in leaf extracts of Argemone maxicana and Solanum xanthocarpum, the plants show better growth and at the same time the populations of nematodes such as M. incognita, R. reniformis and T. brassicae significantly decreased, which naturally improved plant growth. The efficacy of root-dip treatment with respect to improvement in plant weight and reduction in root-knot development and nematode populations, increased with increasing the concentration of leaf extracts and dip durations.  相似文献   

12.
The effects of certain plant steroids (belonging to furostanol glycosides or glycoalkaloids) and -ecdysone on growth and development of phytoparasitic nematodes were studied. It was shown using an experimental system including tomato Lycopersicon esculentum Mill. and root-knot nematode, Meloidogyne incognita Kofoid et White, that a steroid molecule exhibits significant nematicidal activity if it contains a carbohydrate moiety and an additional heterocycle in the steroid core. The maximum nematicidal activity is inherent in glycosides containing chacotriose as the carbohydrate moiety of the molecule. Some compounds tested in this work could be used for protecting plants against phytoparasitic nematodes.  相似文献   

13.
An isolate of the actinomycete, Streptomyces sp. CMU-MH021 produced secondary metabolites that inhibited egg hatch and increased juvenile mortality of the root-knot nematode Meloidogyne incognita in vitro. 16S rDNA gene sequencing showed that the isolate sequence was 99% identical to Streptomyces roseoverticillatus. The culture filtrates form different culture media were tested for nematocidal activity. The maximal activity against M. incognita was obtained by using modified basal (MB) medium. The nematicidal assay-directed fractionation of the culture broth delivered fervenulin (1) and isocoumarin (2). Fervenulin, a low molecular weight compound, shows a broad range of biological activities. However, nematicidal activity of fervenulin was not previously reported. The nematicidal activity of fervenulin (1) was assessed using the broth microdilution technique. The lowest minimum inhibitory concentrations (MICs) of the compound against egg hatch of M. incognita was 30 μg/ml and juvenile mortality of M. incognita increasing was observed at 120 μg/ml. Moreover, at the concentration of 250 μg/ml fervenulin (1) showed killing effect on second-stage nematode juveniles of M. incognita up to 100% after incubation for 96 h. Isocoumarin (2), another bioactive compound produced by Streptomyces sp. CMU-MH021, showed weak nematicidal activity with M. incognita.  相似文献   

14.
The individual, concomitant and sequential inoculation of second stage juveniles (at 2000 J2/kg soil) of Meloidogyne incognita and Rhizoctonia solani (at 2 g mycelial mat/kg soil) showed significant reduction in plant growth parameters viz. plant length, fresh weight and dry weight as compared to control. The greatest reduction in plant growth parameters was recorded in the plants simultaneously inoculated with M. incognita and R. solani followed by sequential and individual inoculation. In sequential inoculation, plant inoculated with M. incognita 15 days prior to R. solani shows more reduction in comparison to plant inoculated with R. solani 15 days prior to M. incognita. Moreover, the multiplication of nematode and number of galls/root system were significantly reduced in concomitant and sequential inoculation as compared to individual inoculation, whereas the intensity of root-rot/root system caused by R. solani was increased in the presence of root-knot nematode M. incognita as compared to when R. solani was inoculated individually.  相似文献   

15.
The ban and restriction on the use of several synthetic chemicals for controlling plant parasitic nematodes, and concern about their side effects necessitate the availability of effective methods of control with low toxicity to humans and non‐target organisms. Therefore, efficacy and mode of action of iprodione, a dicarboximide fungicide, was evaluated against the root‐knot nematode Meloidogyne incognita, in vitro and in vivo conditions, in comparison with the nematicides fenamiphos, fosthiazate and oxamyl at 7.00, 1.66 and 1.66 mL/5 L water, respectively. In vitro, iprodione showed nematostatic rather than nematicidal activity against second‐stage juveniles of M. incognita in contrast to fenamiphos, fosthiazate and oxamyl which were nematicidal. In the in vivo experiment with tomato, iprodione controlled M. incognita less than fenamiphos, fosthiazate and oxamyl. No visual symptoms of phytotoxicity were observed. Therefore, iprodione can be a useful chemical for controlling nematode populations if included in an Integrated Pest Management program.  相似文献   

16.
Studies were made to determine the efficacy of Paecilomyces lilacinus in management of root-knot nematode (Meloidogyne incognita) in soil amended with various organic matters. The soil amendments with organic additives except gram and rice husks significantly reduced the multiplication of M. incognita and the root galling caused by root-knot nematode which consequently increased the plant growth. The greatest improvement in plant growth and reduced reproduction factor and root galling was recorded in soil amendment with leaves of Calotropis procera while the least was in kail saw dust. The best protection against M. incognita was observed on the integration of organic additives with P. lilacinus, which resulted increased plant growth and reduced population build-up of nematodes and root gallings. The leaves of C. procera with P. lilacinus were most effective than all other organic materials used among the different integrated approaches. The organic amendments also increased the parasitism of P. lilacinus on M. incognita.  相似文献   

17.
Suppression of root-knot nematodes is crucially important for maintaining the worldwide development of the banana industry. Growing concerns about human and environmental safety have led to the withdrawal of commonly used nematicides and soil fumigants, thus motivating the development of alternative nematode management strategies. In this study, Meloidogyne javanica was isolated, and the nematicidal effect of Camellia seed cake on this pest was investigated. The results showed that in dish experiments, Camellia seed cake extracts under low concentration (2 g/L) showed a strong nematicidal effect. After treatment for 72 h, the eggs of M. javanica were gradually dissolved, and the intestine of the juveniles gradually became indistinct. Nematicidal compounds, including saponins identified by HPLC-ESI-MS and 8 types of volatile compounds identified by GC-MS, exhibited effective nematicidal activities, especially 4-methylphenol. The pot experiments demonstrated that the application of Camellia seed cake suppressed M. javanica, and promoted the banana plant growth. This study explored an effective nematicidal agent for application in soil and revealed its potential mechanism of nematode suppression.  相似文献   

18.
Abamectin is nematicidal to Meloidogyne incognita and Rotylenchulus reniformis, but the duration and length of cotton taproot protection from nematode infection by abamectin-treated seed is unknown. Based on the position of initial root-gall formation along the developing taproot from 21 to 35 d after planting, infection by M. incognita was reduced by abamectin seed treatment. Penetration of developing taproots by both nematode species was suppressed at taproot length of 5 cm by abamectin-treated seed, but root penetration increased rapidly with taproot development. Based on an assay of nematode mobility to measure abamectin toxicity, the mortality of M. incognita associated with a 2-d-old emerging cotton radicle was lower than mortality associated with the seed coat, indicating that more abamectin was on the seed coat than on the radicle. Thus, the limited protection of early stage root development suggested that only a small portion of abamectin applied to the seed was transferred to the developing root system.  相似文献   

19.
The effectiveness of soil fumigation with 50, 100 and 200 µL kg?1 soil of essential oils (EOs) from the plant species Eucalyptus citriodora, Eucalyptus globulus, Mentha piperita, Pelargonium asperum and Ruta graveolens was assessed against the root‐knot nematode Meloidogyne incognita on potted tomato. Plant growth parameters and number of galls, nematode eggs and juveniles on tomato roots were evaluated after two months of maintenance of the treated plants at 25°C in greenhouse. EOs of E. globulus and P. asperum significantly reduced nematode multiplication and gall formation on tomato roots at all the tested rates, whereas the EOs of E. citriodora, M. piperita and R. graveolens were more suppressive at levels greater than 50 µL kg?1 soil. Biofumigation with EOs of E. globulus and P. asperum resulted also in the largest increase of tomato plant top and root biomass. The five samples of EOs had a different chemical composition as determined by GC and GC‐MS. Structure–activity relationship based on the main constituents of the tested EOs and their nematicidal effect on M. incognita is discussed.  相似文献   

20.
Thiarubrine C, a polyacetylenic 1,2-dithiin isolated from the roots of Rudbeckia hirta (Asteraceae), exhibited strong nematicidal activity in in vitro and growth chamber assays. Thiarubrine C was toxic, in the absence of light, to the plant-parasitic nematodes Meloidogyne incognita and Pratylenchus penetrans at LC₅₀s of 12.4 ppm and 23.5 ppm, respectively. A minimum exposure time between 12 and 24 hours was the critical period for nematode mortality due to thiarubrine C. Although thiarubrine C was not totally dependent on light for toxicity, activity was enhanced in the presence of light, especially with the microbivorous nematode, Teratorhabditis dentifera. Upon exposure of M. incognita juveniles to 20 ppm thiarubrine C for 1 hour, infection of tomato plants was greatly reduced compared to untreated checks. Thiarubrine C was also effective in reducing plant infection when mixed with soil 24 hours prior to or at planting, unlike other related compounds such as δ-terthienyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号