首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
SRY (sex-determining region Y) is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES) with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s) were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.  相似文献   

2.
The SRY gene on the mammalian Y chromosome undoubtedly acts to determine testis, but it is still quite unclear how. It was originally supposed that SRY acts directly to activate other genes in the testis-determining pathway. This paper presents an alternative hypothesis that SRY functions indirectly, by interacting with related genes SOX3 (from which SRY evolved) and SOX9 (which appears to be intimately involved in vertebrate gonad differentiation). Specifically, I propose that in females SOX3 inhibits SOX9 function, but in males, SRY inhibits SOX3 and permits SOX9 to enact its testis-determining role. This hypothesis makes testable predictions of the phenotypes of XX and XY individuals with deficiencies or overproduction of any of the three genes, and is able to account for the difficult cases of XX(SRY−) males and transdifferentiation in the absence of SRY. The hypothesis also suggests a way that the dominant SRY sex-determining system of present-day mammals may have evolved from an ancient system relying on SOX3 dosage. BioEssays 20 :264–269, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

3.
4.
5.
We report a Mexican family in which two sibs were identified as “classic” XX males without genital ambiguities. Molecular studies revealed that both patients were negative for several Y sequences, including SRY. A review of familial cases disclosed that this is the first family where a complete male phenotype was observed in Y-negative XX male non-twin brothers. These data suggest that an inherited loss-of-function mutation, in a gene participating in the sex-determining cascade, can induce normal male sexual differentiation in the absence of SRY. Received: 5 March 1997 / Accepted: 9 May 1997  相似文献   

6.
Genetic analysis of a family with 46, XY “female” associated with infertility was performed using the conventional G-banding and gene mutation screening. The karyotypes of the two female patients were 46, XY and those of their parents were normal. The mutation screenings in sex-determining region Y (SRY) gene and androgen receptor (AR) gene were carried out. No mutation has been found in the whole coding sequence of SRY gene. The mutation of codon 840 CGT (arginine) to CAT (histidine) of AR gene led to the infertility in the patients. The patients showed androgen insensitivity. The clinical phenotype of theirs presented more deleteriously than and different from the one reported before, though they had the same mutation of codon 840 CGT (arginine) to CAT (histidine) of AR gene, which was very different from the mutation of 840 CGT (arginine) to TGT (cysteine) at the same codon.  相似文献   

7.
Campomelic dysplasia (CD) is a skeletal malformation syndrome frequently accompanied by 46,XY sex reversal. A mutation-screening strategy using SSCP was employed to identify mutations in SOX9, the chromosome 17q24 gene responsible for CD and autosomal sex reversal in man. We have screened seven CD patients with no cytologically detectable chromosomal aberrations and two CD patients with chromosome 17 rearrangements for mutations in the entire open reading frame of SOX9. Five different mutations have been identified in six CD patients: two missense mutations in the SOX9 putative DNA binding domain (high mobility group, or HMG, box); three frameshift mutations and a splice-acceptor mutation. An identical frameshift mutation is found in two unrelated 46,XY patients, one exhibiting a male phenotype and the other displaying a female phenotype (XY sex reversal). All mutations found affect a single allele, which is consistent with a dominant mode of inheritance. No mutations were found in the SOX9 open reading frame of two patients with chromosome 17q rearrangements, suggesting that the translocations affect SOX9 expression. These findings are consistent with the hypothesis that CD results from haploinsufficiency of SOX9.  相似文献   

8.
We describe a novel mutation in the coding region of theSRY gene in a 46, XY female with Swyer syndrome. Analysis ofSRY was carried out by direct sequencing of a 780-bp PCR product that included theSRY open reading frame (ORF). This revealed the presence of a point mutation, ins 108A, in the coding region 5’ to the HMG box which results in a frame shift and premature termination of the encoded protein. No other mutation was found in theSRY ORF. We infer that sex reversal in this individual is a result of this insertion. In none of the 13 other 46, XY females that were studied was a mutation detected inSRY, confirming earlier findings that most cases of XY femaleness are due to causes other than mutation inSRY. These observations and those of others are discussed in relation to the aetiology of XY sex reversal.  相似文献   

9.
The molecular background of the most frequent intersexuality syndrome in dogs (female-to-male sex reversal with the female karyotype and a lack of the SRY gene) is unknown. In this article, new cases of this syndrome are described in two unrelated American Staffordshire terrier dogs and one miniature pinscher dog subjected to cytogenetic and molecular analysis due to the presence of an enlarged clitoris. One dog was operated on and histological studies of the gonads revealed a testicular structure without signs of spermatogenesis, but the uterus wall appeared to be normal. All three dogs had female chromosome complements and lacked the Y-linked genes SRY and ZFY. Eight fragments, representing the vast majority of the coding sequence of the SOX9 gene, and two fragments of the 5' flanking region of this gene were analyzed. The studied fragments had identical DNA sequences when comparing the intersexual dogs with GenBank sequences (AY237827; NW139883). Thus a mutation in the coding sequence as well as the promoter region of the SOX9 gene might be excluded as a cause of this type of intersexuality. The importance of further studies of the 5' flanking region of this gene is discussed.  相似文献   

10.
11.
Androgens are required for normal male sex differentiation and development of male secondary sexual characteristics. Mutations in AR gene are known to cause defects in male sexual differentiation. In current study, we enrolled a 46,XY phenotypically female patient bearing testes in inguinal canal. DNA sequencing of the AR gene detected a missense mutation C.1715A?>?G (p. Y572C) in exon 2 which is already known to cause complete androgen insensitivity syndrome (CAIS). We focused on the effects of this mutation on the testicular histopathology of the patient. Surface spreading of testicular tissues showed an absence of spermatocytes while H&E staining showed that seminiferous tubules predominantly have only Sertoli cells. This meiotic failure is likely due to the effect of the AR mutation which ultimately leads to Sertoli cell only syndrome. Tubules were stained with SOX9 and AMH which revealed Sertoli cells maturation arrest. Western blot and realtime PCR data showed that patient had higher levels of AMH, SOX9 and inhibin-B in the testis. Therefore, we suggest that the dysfunctioning of AR by mutation enhances AMH expression which ultimately leads to the failure in maturation of Sertoli cells.  相似文献   

12.
SOX genes are a family of genes that encode for proteins which are characterised by the presence of a HMG-domain related to that of the mammalian sex-determining gene (SRY). By definition, the DNA binding domain of SOX genes is at least 50% identical to the 79 amino acid HMG domain of the SRY gene. We report here two HMG-box sequences from two microbat species (R. ferrumequinum and P. Pipistrellus) which were PCR amplified using a primer pair specific to the mouse Sry HMG-box. The high percentage of identity of this sequences with the human and mouse SOX30 HMG-box suggests that they are the SOX30 HMG-box for these two bat species. The sequencing data reported in this paper are available in the EMBL Nucleotide Sequence Database through the following accession numbers: Pipistrellus pipistrellus SOX30 gene: AJ243292; Rhinolophus ferrumequinum SOX30 gene: AJ243293. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Yersinia ruckeri is the causative agent of enteric redmouth diseases (ERM) and one of the major bacterial pathogens causing losses in salmonid aquaculture. Since recent ERM vaccine breakdowns have been described mostly attributed to emergence of Y. ruckeri biotype 2 strains, rapid, reproducible, and sensitive methods for detection are needed. In this study, a real-time polymerase chain reaction (PCR) primer/probe set based on recombination protein A (recA) gene was designed and optimized to improve the detection of Y. ruckeri. The primer/probe set proved to have a 100 % analytical specificity and a sensitivity of 1.8 ag μl?1, equivalent to 1.7 colony-forming units (CFU)?ml?1, for purified DNA, 3.4 CFU g?1 for seeded liver, kidney, and spleen tissues, and 0.34 CFU/100 μl?1 for seeded blood, respectively. The assay was highly reproducible with low variation coefficient values for intra- and inter-run experiments (2.9 % and 9.5 %, respectively). Following optimization, the assay was used to detect changes in the bacterial load during experimental infection. Rainbow trout (Onchorhynchus mykiss) were exposed to two strains of Y. ruckeri (biotype 1 and biotype 2) by intraperitoneal inoculation. Internal organs (liver, kidney, spleen) and blood were biopsied from dead fish daily for 15 days to quantify copies of pathogen DNA per gram of tissue. The findings showed the efficacy of this real-time PCR assay to quantify Y. ruckeri cells in the fish tissues and also confirmed this assay as a non-lethal method for the detection of this pathogen in blood samples.  相似文献   

14.
TheSRY gene (sex-determining region on the Y chromosome; MIM *480000) is responsible for initiating male gonadal development. However, only 15–20% of the cases of XY gonadal dysgenesis are due to mutations in its sequence. Recently, heterozygous mutations in theNR5A1 gene (nuclear receptor subfamily 5, group A, member 1; MIM +184757) have been described in association with ovarian failure and disorders of testis development with or without adrenal failure. Here we describe a case of XY complete gonadal dysgenesis due to a p.D293N homozygous mutation in theNR5A1 gene, with normalSRY and no adrenal failure.  相似文献   

15.
Molecular genetic analysis was performed for 26 phenotypically male patients lacking the Y chromosome in the karyotype. The sex-determining region Y (SRY) gene was found in 77% of the patients. PCR analysis of Y-specific loci in the 17 SRY-positive patients revealed Yp fragments varying in size in 16 cases and cryptic mosaicism (or chimerism) for the Y chromosome in one case. The frequencies of class I, II, and III (Yp+)XX sex reversals were 18.75, 25.25, and 56%, respectively. All of the class III (Yp+)XX sex-reversed patients had a 3.5-Mb paracentric inversion flanked by inverted repeats 3 (IR3) on the short arm of the Y chromosome.  相似文献   

16.
We investigated the gene encoding the beta subunit of cGMP phosphodiesterase (PDE6B) as a candidate for generalized progressive retinal atrophy (gPRA), an autosomal recessively transmitted eye disease in dogs. The PDE6B gene was isolated from a genomic library. Single-strand conformation polymorphism analysis revealed eight intronic variations in different subsets of the 14 dog breeds investigated. In addition, we identified an 8-bp insertion after codon 816 in certain Sloughi dogs. Analysis of PRA-affected and obligatory carrier Sloughis showed that this mutation cosegregates with disease status in a large pedigree. All other exchanges identified were not located in functionally relevant parts of the gene (e.g., in the splice signal consensus sites). In most dog breeds (Labrador retriever, Tibetan mastiff, dachshund, Tibetan terrier, miniature poodle, Australian cattle dog, cocker spaniel, collie, Saarloos wolfhound, Chesapeake Bay retriever, and Yorkshire terrier), PDE6B was excluded as a candidate gene for gPRA because heterozygous allele constellations were detected in diseased animals. Therefore, the PDE6B sequence variations did not segregate together with the mutation(s) causing gPRA. Direct and indirect DNA tests concerning gPRA can be offered now for a variety of different dog breeds.  相似文献   

17.
18.
19.
20.
SRY (sex-determining region Y) gene, MIM 480000, NM_005634) is crucial for sex differentiation which encodes the protein responsible for initiating testis differentiation. SRY mutations are associated with the presence of XY gonadal dysgenesis symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号