首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genomic in situ hybridization (GISH) with Secale cereale cv. ‘Jingzhou rye’ DNA as a probe to chromosomes of hexaploid triticale line Fenzhi-1 revealed that not only were all chromosomes of rye strongly hybridized along the entire chromosome length, but there were also stronger signals in terminal or subtelomeric regions. This pattern of hybridization signals is referred to as GISH banding. After GISH banding, sequential fluorescene in situ hybridizaion (FISH) with tandem repeated sequence pSc200 and pSc250 as probes showed that the chromosomal distribution of pSc200 is highly coincident with the GISH banding pattern, suggesting that GISH banding revealed chromosomal distribution of pSc200 in rye. In addition, FISH using pSc200 and pSc250 as probes to chromosomes of 11 species of the genus Secale and two artificial amphiploids (Triticum aestivum-S. strictum subsp. africanum amphiploid and Aegilops tauschii-S. silvestre amphiploid) showed that (1) the chromosomal distribution of pSc200 and pSc250 differed greatly in Secale species, and the trend towards an increase in pSc200 and pSc250 binding sites from wild species to cultivated rye suggested that pSc200 and pSc250 sequences gradually accumulated during Secale evolution; (2) the chromosomal distribution of pSc200 and pSc250 presented polymorphism on homologous chromosomes, suggesting that the same species has two heterogeneous homologous chromosomes; (3) the intensity and number of hybridization signals varied differently on chromosomes between pSc200 and pSc250, suggesting that each repetitive family evolved independently.  相似文献   

2.

Background

Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported.

Methodology/Principal Findings

Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line.

Conclusions/Significance

These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.  相似文献   

3.
Genome modifications that occur at the initial interspecific hybridization event are dynamic and can be consolidated during the process of stabilization in successive generations of allopolyploids. This study identifies the number and chromosomal location of ribosomal DNA (rDNA) sites between Secale cereale, Dasypyrum villosum, and their allotetraploid S. cereale × D. villosum hybrids. For the first time, we show the advantages of FISH to reveal chromosome rearrangements in the tetraploid Secale × Dasypyrum hybrids. Based on the specific hybridization patterns of ribosomal 5S, 35S DNA and rye species-specific pSc200 DNA probes, a set of genotypes with numerous Secale/Dasypyrum translocations of 1R/1V chromosomes were identified in successive generations of allotetraploid S. cereale × D. villosum hybrids. In addition we analyse rye chromosome pairs using FISH with chromosome-specific DNA sequences on S. cereale × D. villosum hybrids.  相似文献   

4.
S Marín  A Martín  F Barro 《Génome》2008,51(8):580-588
Hordeum chilense Roem. et Schult. (2n = 14) is an autogamous wild barley from Chile and Argentina included in the section Anisolepis Nevski. This species shows interesting agronomic traits that can be incorporated into crop plant species. Hordeum chilense has been successfully crossed with species of the genus Aegilops. Among the amphiploids obtained, the hexaploid tritordeum (2n = 6x = 42, AABBHchHch) is outstanding and shows good agronomic characteristics, suggesting its potential either as a new crop or as a bridge species to introgress interesting traits into cultivated cereals. The aim of the present work was to study the hybridization patterns of the two repetitive DNA probes pAs1 and pSc119.2 to evaluate their utility for the identification of H. chilense chromosomes. Fourteen lines of H. chilense were analyzed with fluorescent in situ hybridization using probes pSc119.2 and pAs1. The probe pAs1 was more widely dispersed than pSc119.2 over the H. chilense (Hch) genome. We found 89 different signals for pAs1, distributed evenly over the whole genome, and 10 for pSc119.2, located mainly over the telomeric regions. Five distinct hybridization signals were found for pAs1 and four distinct signals for pSc119.2. These signals allow the identification of different H. chilense lines. For example, centromeric signals for pAs1 on the short arms of chromosomes 1 and 7 identify line H46, and a telomeric signal for pSc119.2 on the short arm of chromosome 2 identifies line H1. A high degree of polymorphism in the hybridization patterns was found, confirming the extensive variability present in H. chilense. This work provides tools for the identification of H. chilense chromosomes in different genetic backgrounds.  相似文献   

5.
利用普通小麦(Triticum aestivum L.)“小偃6号”与黑麦(Secale cereale L.)品种“德国白粒”杂交,选育出“小偃6号”类型带有黑麦性状的种质材料。应用总基因组原位杂交(GISH)进行检测,在8份材料中探测到黑麦染色质的存在,其中附加系3个,代换系1个,易位系4个;进一步用荧光绿标记探针pSc119.2及荧光红标记探针pAs1的双色荧光原位杂交(FISH)技术,对其中部分品系的染色体组成进行分析鉴定,结果表明:易位系BC116-1是1RS/1BL小麦/黑麦易位系,BC152-1是涉及一条1B染色体的1RS/1BL易位系, 代换系BC97-2是2R(2D)二体代换系;附加系BC122-3附加了一条6R黑麦染色体,一条6B染色体的长臂缺失。同时,对连续的总基因组原位杂交和双色荧光原位杂交技术在小麦育种中的应用进行了讨论。  相似文献   

6.
An improvement of rye is one of the mainstream goals of current breeding. Our study is concerned with the introduction of the tetraploid triticale (ABRR) into the 4x rye (RRRR) using classical methods of distant crossing. One hundred fifty BC1F9 hybrid plants [(4x rye?×?4x triticales)?×?4x rye] obtained from a backcrossing program were studied. The major aim of this work was to verify the presence of an introgressed A- and B- genome chromatin of triticale in a collection of the 4x rye-tiritcale hybrids and to determine their chromosome compositions. In the present study, karyotypes of the previously reported BC1F2s and BC1F3s were compared with that of the BC1F9 generation as obtained after several subsequent open pollinations. The genomic in situ hybridisation (GISH) allowed us to identify 133 introgression forms in which chromosome numbers ranged between 26 and 32. Using four DNA probes (5S rDNA, 25S rDNA, pSc119.2 and pAs1), the fluorescence in situ hybridisation (FISH) was carried out to facilitate an exact chromosome identification in the hybrid plants. The combination of the multi-colour GISH with the repetitive DNA FISH singled out five types of translocated chromosomes: 2A.2R, 4A.4R, 5A.5R, 5B.5R and 7A.7R among the examined BC1F9s. The reported translocation lines could serve as valuable sources of wheat chromatin suitable for further improvements of rye.  相似文献   

7.
Wang J  Xiang F  Xia G 《Planta》2005,221(2):277-286
The introgressed small-chromosome segment of Agropyron elongatum (Host.) Neviski (Thinopyrum ponticum Podp.) in F5 line II-1-3 of somatic hybrid between common wheat (Triticum aestivum L.) and A. elongatum was localized by sequential fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and karyotype data. Karyotype analysis offered basic data of arm ratios and relative lengths of 21 pairs of chromosomes in parent wheat Jinan177 and hybrid II-1–3. Using special high repetitive sequences pSc119.2 and pAs1 for FISH, the entire B- and D-genome chromosomes were detected. The FISH pattern of hybrid II-1-3 was the same as that of parent wheat. GISH using whole genomic DNA from A. elongatum as probe determined the alien chromatin. Sequential GISH and FISH, in combination with some of the karyotype data, localized the small chromosome segments of A. elongatum on the specific sites of wheat chromosomes 2AL, 1BL, 5BS, 1DL, 2DL and 6DS. FISH with probe OPF-031296 from randomly amplified polymorphic DNA (RAPD) detected E-genome chromatin of A. elongatum, which existed in all of the small chromosome segments introgressed. Microsatellite primers characteristic for the chromosome arms above were used to check the localization and reveal the genetic identity. These methods are complementary and provide comprehensive information about the genomic constitution of the hybrid. The relationship between hybrid traits and alien chromatin was discussed.  相似文献   

8.
Salix viminalis L. (2n?=?38) is a diploid dicot species belonging to the Salix genus of the Salicaceae family. This short-rotation woody crop is one of the most important renewable bioenergy resources worldwide. In breeding for high biomass productivity, limited knowledge is available on the molecular cytogenetics of willow, which could be combined with genetic linkage mapping. The present paper describes the adaptation of a fluorescence in situ hybridisation (FISH) protocol as a new approach to analyse the genomic constitution of Salix viminalis using the heterologous DNA clones pSc119.2, pTa71, pTa794, pAs1, Afa-family, pAl1, HT100.3, ZCF1 and the GAA microsatellite marker. Three of the nine probes showed unambiguous signals on the metaphase chromosomes. FISH analysis with the pTa71 probe detected one major 18S-5.8S-26S rDNA locus on the short arm of one chromosome pair; however, the pTa794 rDNA site was not visible. One chromosome pair showed a distinct signal around the centromeric region after FISH with the telomere-specific DNA clone HT100.3. Two chromosome pairs were found to have pAs1 FISH signals, which represent a D-genome-specific insert from Aegilops tauschii. Based on the FISH study, a set of chromosomes with characteristic patterns is presented, which could be used to establish the karyotype of willow species.  相似文献   

9.
The genomic constitution of Aegilops cylindrica Host (2n = 4x = 28, DcDcCcCc) was analyzed by C-banding, genomic in situ hybridization (GISH), and fluorescence in situ hybridization (FISH) using the DNA clones pSc119, pAs1, pTa71, and pTA794. The C-banding patterns of the Dc- and Cc-genome chromosomes of Ae. cylindrica are similar to those of D-and C-genome chromosomes of the diploid progenitor species Ae. tauschii Coss. and Ae. caudata L., respectively. These similarities permitted the genome allocation and identification of the homoeologous relationships of the Ae. cylindrica chromosomes. FISH analysis detected one major 18S-5.8S-25S rDNA locus in the short arm of chromosome 1Cc. Minor 18S-5.8S-25S rDNA loci were mapped in the short arms of 5Dc and 5Cc. 5S rDNA loci were identified in the short arm of chromosomes 1Cc, 5Dc, 5Cc, and 1Dc. GISH analysis detected intergenomic translocation in three of the five Ae. cylindrica accessions. The breakpoints in all translocations were non-centromeric with similar-sized segment exchanges.  相似文献   

10.
The aim of the experiments was to produce and identify different Triticum aestivum-Aegilops biuncialis disomic addition lines. To facilitate the exact identification of the Ae. biuncialis chromosomes in these Triticum aestivum-Ae. biuncialis disomic additions, it was necessary to analyze the fluorescence in situ hybridization (FISH) pattern of Ae. biuncialis (2n = 4x = 28, U(b)U(b)M(b)M(b)), comparing it with the diploid progenitors (Aegilops umbellulata, 2n = 2x = 14, UU and Aegilops comosa, 2n = 2x = 14, MM). To identify the Ae. biuncialis chromosomes, FISH was carried out using 2 DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its 2 diploid progenitor species. Differences in the hybridization patterns of all chromosomes were observed among the 4 Ae. umbellulata accessions, the 4 Ae. comosa accessions, and the 3 Ae. biuncialis accessions analyzed. The hybridization pattern of the M genome was more variable than that of the U genome. Five different wheat-Ae. biuncialis addition lines were produced from the wheat-Ae. biuncialis amphiploids produced earlier in Martonvásár. The 2M, 3M, 7M, 3U, and 5U chromosome pairs were identified with FISH using 3 repetitive DNA clones (pSc119.2, pAs1, and pTa71) in the disomic chromosome additions produced. Genomic in situ hybridization (GISH) was used to differentiate the Ae. biuncialis chromosomes from wheat, but no chromosome rearrangements between wheat and Ae. biuncialis were detected in the addition lines.  相似文献   

11.
Introgressive hybridization is an efficient means to improve the genetic diversity of cultivated cereals, including triticale. To identify the triticale lines with Aegilops introgressions, genotyping was carried out with ten lines obtained by crossing hexaploid triticale with genome-substitution forms of the common wheat cultivar Aurora: Aurolata (AABBUU), Aurodes (AABBSS), and Aurotika (AABBTT). The genome composition of the triticale lines was studied by in situ hybridization, and recombination events involving Aegilops and/or common wheat chromosomes were assumed for nine out of the ten lines. Translocations involving rye chromosomes were not observed. Substitutions for rye chromosomes were detected in two lines resulting from crosses with Aurolata. Genomic in situ hybridization (GISH) with Ae. umbellulata DNA and molecular genetic analysis showed that chromosome 1R was substituted with Ae. umbellulata chromosome 1U in one of the lines and that 2R(2U) substitution took place in the other line. Fluorescence in situ hybridization (FISH) with the Spelt1 and pSc119.2 probes revealed a translocation from Ae. speltoides to the long arm of chromosome 1B in one of the two lines resulting from crosses with Aurodes and a translocation in the long arm of chromosome 7B in the other line. In addition, the pSc119.2 probe revealed chromosome 1B rearrangements in four lines resulting from crosses with Aurolata and in a line resulting from crosses with Aurotika. The lines were tested for main productivity parameters. A negative effect on all productivity parameters was demonstrated for Ae. umbellulata chromosome 2U. The overwinter survival in all of the lines was similar to or even higher than in the original triticale cultivars. A substantial increase in winter resistance as compared with the parental cultivar was observed for the line carrying the T7BS-7SL translocation. The line with the 1R(1U) chromosome substitution seemed promising for the baking properties of triticale.  相似文献   

12.
Hybrids derived from wheat (Triticum aestivum L.) × rye (Secale cereale L.) have been widely studied because of their important roles in wheat cultivar improvement. Repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 are usually used as probes in fluorescence in situ hybridization (FISH) analysis of wheat, rye, and hybrids derived from wheat × rye. Usually, some of these repetitive sequences for FISH analysis were needed to be amplified from a bacterial plasmid, extracted from bacterial cells, and labeled by nick translation. Therefore, the conventional procedure of probe preparation using these repetitive sequences is time-consuming and labor-intensive. In this study, some appropriate oligonucleotide probes have been developed which can replace the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 in FISH analysis of wheat, rye, and hybrids derived from wheat × rye. These oligonucleotides can be synthesized easily and cheaply. Therefore, FISH analysis of wheat and hybrids derived from wheat × rye using these oligonucleotide probes becomes easier and more economical.  相似文献   

13.
A Cuadrado  N Jouve  C Ceoloni 《Génome》1995,38(6):1061-1069
The molecular characterization of heterochromatin in six lines of rye has been performed using fluorescence in situ hybridization (FISH). The highly repetitive rye DNA sequences pSc 119.2, pSc74, and pSc34, and the probes pTa71 and pSc794 containing the 25S-5.8S-18S rDNA (NOR) and the 5S rDNA multigene families, respectively, were used. This allowed the individual identification of all seven rye chromosomes and most chromosome arms in all lines. All varieties showed similar but not identical patterns. A standard in situ hybridization map was constructed following the nomenclature system recommended for C-bands. All FISH sites observed appeared to correspond well with C-band locations, but not all C-banding sites coincided with hybridization sites of the repetitive DNA probes used. Quantitative and qualitative differences between different varieties were found for in situ hybridization response at corresponding sites. Variation between plants and even between homologous chromosomes of the same plant was found in open-pollinated lines. In inbred lines, the in situ pattern of the homologues was practically identical and no variation between plants was detected. The observed quantitative and qualitative differences are consistent with a corresponding variation for C-bands detected both within and between cultivars.  相似文献   

14.
Fluorescence and genomic in situ hybridization (FISH and GISH) were used to establish the cytogenetic constitution of two wheat × Thinopyrum intermedium partial amphiploids H95 and 55(1-57). Both partial amphiploids are high-protein lines having resistance to leaf rust, yellow rust and powdery mildew and have in total 56 chromosomes per cell. Repetitive DNA probes (pTa71, Afa family and pSc119.2) were used to identify the individual wheat chromosomes and to reveal the distribution of these probes within the alien chromosomes. FISH detected 6B tetrasomy in H95 and a null (1D)-tetrasomy (1B) in 55(1-57). GISH was carried out using biotin labeled Th. intermedium DNA and digoxigenin labeled Pseudoroegneria spicata DNA as probes, subsequently. GISH results revealed 44 wheat chromosomes and four Thinopyrum chromosome pairs, including three S and one J chromosome pairs in line H95. Line 55(1-57), contained 42 wheat chromosomes and six Th. intermedium pairs, including two S and one JS pairs. Additionally, two identical translocated chromosome pairs with diminished affinity to the alien chromatin were detected in both amphiploids. Another two translocations were found in 55(1-57), with satellite sections from the Thinopyrum J genome.  相似文献   

15.
Triticum timopheevii (2n = 4x = 28, GGAtAt) is a tetraploid wheat formerly cultivated in western Georgia. The natural allopolyploid Triticum zhukovskyi is a hexaploid taxon originated from hybridization of T. timopheevii with cultivated einkorn T. monococcum (2n = 2x = 14, AmAm). Karyotypically T. timopheevii and T. zhukovskyi differ from other tetraploid and hexaploid wheats and were assigned to the section Timopheevii of the genus Triticum L. Triticum timopheevii and T. zhukovskyi are resistant to many fungal diseases and therefore could potentially be utilized for wheat improvement. We were aiming to precisely identify all T. timopheevii chromosomes and to trace the evolution of T. zhukovskyi. For this, we developed a set of molecular cytogenetic landmarks based on eleven DNA probes. Each chromosome can now be characterized by two to eight probes. The pTa-535 sequence allows the identification of all At-genome chromosomes, whereas G-genome and some At-genome chromosomes can be identified using (GAA/CTT) n and pSc119.2 probes. The probes pAesp_SAT86, pAs1, Spelt-1, Spelt-52 and 5S and 45S rDNA can be applied as additional markers to discriminate particular chromosomes or chromosomal regions. The distribution of (GAA/CTT) n , pTa-535 and pSc119.2 DNA probes on T. timopheevii chromosomes is distinct from other tetraploid wheats and can therefore be used to track individual chromosomes in introgression programs. Our study confirms the origin of T. zhukovskyi from hybridization of T. timopheevii with T. monococcum; however, we show that the emergence was accompanied by changes involving mostly At-genome chromosomes. This may be due to the presence of two closely related A-genomes in the T. zhukovskyi karyotype.  相似文献   

16.
The genomic organization and chromosomal distributions of two abundant tandemly repeated DNA sequences, dpTa1 and pSc119.2, were examined in six wild Hordeum taxa, representing the four basic genomes of the genus, by Southern and fluorescence in situ hybridization. The dpTa1 probe hybridized to between 30 and 60 sites on the chromosomes of all five diploid species studied, but hybridization patterns differed among the species. Hybridization of the pSc119.2 sequence to the chromosomes and Southern blots of digested DNA detected signals in Hordeum bulbosum, Hordeum chilense, Hordeum marinum and Hordeum murinum 4x, but not in Hordeum murinum 2x and Hordeum vulgare ssp. spontaneum. A maximum of one pSc119.2 signal was observed in the terminal or subterminal region of each chromosome arm in the species carrying this sequence. The species carrying the same I-genome differed in the presence (Hordeum bulbosum) or absence (Hordeum spontaneum) of pSc119.2. The presence of pSc119.2 in the tetraploid cytotype of Hordeum murinum, but its absence in the diploid cytotype, suggests that the tetraploid is not likely to be a simple autotetraploid of the diploid. Data about the inter- and intra-specific variation of the two independent repetitive DNA sequences give information about both the interrelationships of the species and the evolution of the repetitive sequences. Received: 17 March 1999 / Accepted: 16 June 1999  相似文献   

17.
An accurate physical map of the location of the 5S and the 18S-5.8S-25S rRNA genes and a repetitive DNA sequence has been produced on Aegilops umbellulata Zhuk., (2n = 2x = 14) chromosomes by in situ hybridization. Chromosome morphology together with the hybridization pattern of pSc119.2, a DNA sequence from rye, allowed identification and discrimination of different chromosomes; pSc119.2 hybridizes with all Ae. umbellulata chromosomes at the telomeres, except for the short arm of chromosome 6U, and shows intercalary sites on the long arms of chromosomes 6U and 7U. The 5S and 18S-25S rDNA have been mapped physically only on the short arms of chromosomes 1U and 5U. On chromosome 1U the order of the genes is 5S rDNA subterminal and 18S-25S rDNA more proximal, while on chromosome 5U the position of the genes is reversed. The relative order of the genes, together with the hybridization pattern of the pSc119.2, is useful in identifying whole chromosomes or chromosome segments from Ae. umbellulata in recombinant or addition lines with wheat. The data help link the physical organization of chromosomes to the genetic map. Other members of the Triticeae vary in the presence and order of the 5S and 18S-25S rDNA sequences on groups 1 and 5, indicating multiple and complex evolutionary rearrangements of the chromosome arms.  相似文献   

18.
 Six polyploid Aegilops species containing the D genome were studied by C-banding and fluorescence in situ hybridization (FISH) using clones pTa71 (18S-5.8S-26S rDNA), pTa794 (5S rDNA), and pAs1 (non-coding repetitive DNA sequence) as probes. The C-banding and pAs1-FISH patterns of Ae. cylindrica chromosomes were identical to those of the parental species. However, inactivation of the NOR on chromosome 5D with a simultaneous decrease in the size of the pTa71-FISH site was observed. The Nv and Dv genomes of Ae. ventricosa were somewhat modified as compared with the N genome of Ae. uniaristata and the D genome of Ae. tauschii. Modifications included minor changes in the C-banding and pAs1-FISH patterns, complete deletion of the NOR on chromosome 5Dv, and the loss of several minor 18S-5.8S-26S rDNA loci on Nv genome chromosomes. According to C-banding and FISH analyses, the Dcr1 genome of Ae. crassa is more similar to the Dv genome of Ae. ventricosa than to the D genome of Ae. tauschii. Mapping of the 18S-5.8S-26S rDNA and 5S rDNA loci by multicolor FISH suggests that the second (Xcr) genome of tetraploid Ae. crassa is a derivative of the S genome (section Emarginata of the Sitopsis group). Both genomes of Ae. crassa were significantly modified as the result of chromosomal rearrangements and redistribution of highly repetitive DNA sequences. Hexaploid Ae. crassa and Ae. vavilovii arose from the hybridization of chromosomal type N of tetraploid Ae. crassa with Ae. tauschii and Ae. searsii, respectively. Chromosomal type T1 of tetraploid Ae. crassa and Ae. umbellulata were the ancestral forms of Ae. juvenalis. The high level of genome modification in Ae. juvenalis indicates that it is the oldest hexaploid species in this group. The occurrence of hexaploid Ae. crassa was accompanied by a species-specific translocation between chromosomes 4Dcr1 and 7Xcr. No chromosome changes relative to the parental species were detected in Ae. vavilovii, however, its intraspecific diversity was accompanied by a translocation between chromosomes 3Xcr and 3Dcr1. Received July 24, 2001 Accepted October 1, 2001  相似文献   

19.
20.
Structural alterations of chromosomes are often found in wheat-rye hybrids. In the majority of cases modifications are observed for rye chromosomes, yet chromosome aberration cases are described for wheat, including the progeny of Triticum aestivum disomic and monosomic addition lines. Since wheat-rye substitution and translocation lines are the source of rye chromatin in wheat breeding programs, the information on possible chromosome changes in the genomes of introgressive forms is important. Chromosome behavior in F1 meiosis and chromosomal composition of F2 karyotypes for double monosomics 1Rv-1A were studied by applying C-banding, genomic in situ hybridisation (GISH) using rye genomic DNA, and sequential in situ hybridization using repetitive sequences pAs1, pSc119.2 and centromere specific pAet-06 as probes. The double monosomics 1Rv-1A were obtained by crossing of disomic substitution line with chromosome 1A replaced by Secale cereale 1Rv in the bread wheat Saratovskaya 29 (S29) background with S29. The results indicated a high frequency of bipolar chromosome 1Rv orientation, as compared to 1A, at metaphase I (MI) (58.6 and 34.7 % of meiocytes, respectively), and, at anaphase I (AI), chromatid segregation of 1Rv compared to 1A (70.53 and 32.14 % of meiocytes, respectively). In few cases desynapsis of wheat homologues was observed, at AI, the chromosomes randomly distributed between the poles or underwent chromatid segregation. At AI, the two wheat homologues separated onto sister chromatids in 10.89 % of cells.The plants F2 karyotypes were marked with aneuploidy not only of chromosomes 1A and 1Rv, but also of 1D, 2D, 3D, 3B, 3A, 4A, 6D, 6B, 6A, and 7D. Structural changes were observed for the chromosomes of the first homoeologous group (1Rv, 1A, 1D, 1B), as well as for 2B, 5D, 6B, and 7B. The chromosomes 1Rv and 6B often demonstrated aberrations. The types of aberrations were centromeric break, deletions of various sizes, and a changed repeat pSc119.2 localization pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号