首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase.   总被引:32,自引:7,他引:25       下载免费PDF全文
We demonstrate that despite lacking a 3'----5' proofreading exonuclease, the Thermus aquaticus (Taq) DNA polymerase can catalyze highly accurate DNA synthesis in vitro. Under defined reaction conditions, the error rate per nucleotide polymerized at 70 degrees C can be as low as 10(-5) for base substitution errors and 10(-6) for frameshift errors. The frequency of mutations produced during a single round of DNA synthesis of the lac Z alpha gene by Taq polymerase responds to changes in dNTP concentration, pH, and the concentration of MgCl2 relative to the total concentration of deoxynucleotide triphosphates present in the reaction. Both base substitution and frameshift error rates of less than 1/100,000 were observed at pH 5-6 (70 degrees C) or when MgCl2 and deoxynucleotide triphosphates were present at equimolar concentrations. These high fidelity reaction conditions for DNA synthesis by the Taq polymerase may be useful for specialized uses of DNA amplified by the polymerase chain reaction.  相似文献   

2.
We demonstrate that the DNA polymerase isolated from Thermococcus litoralis (VentTM DNA polymerase) is the first thermostable DNA polymerase reported having a 3'----5' proofreading exonuclease activity. This facilitates a highly accurate DNA synthesis in vitro by the polymerase. Mutational frequencies observed in the base substitution fidelity assays were in the range of 30 x 10(-6). These values were 5-10 times lower compared to other thermostable DNA polymerases lacking the proofreading activity. All classes of DNA polymerase errors (transitions, transversions, frameshift mutations) were assayed using the forward mutational assay (1). The mutation frequencies of Thermococcus litoralis DNA polymerase varied between 15-35 x 10(-4) being 2-4 times lower than the respective values obtained using enzymes without proofreading activity. We also noticed that the fidelity of the DNA polymerase from Thermococcus litoralis responds to changes in dNTP concentration, units of enzyme used per one reaction and the concentration of MgSO4 relative to the total concentration of dNTPs present in the reaction. The high fidelity DNA synthesis in vitro by Thermococcus litoralis DNA polymerase provides good possibilities for maintaining the genetic information of original target DNA sequences intact in the DNA amplification applications.  相似文献   

3.
DNA synthesis fidelities of two thermostable DNA polymerases, Thermus aquaticus (Taq) and Thermococcus litoralis (Tli, also known as Vent), and a non-thermostable enzyme, a modified T7 DNA polymerase (Sequenase), were determined by analyzing polymerase chain reaction (PCR) products using denaturing gradient gel electrophoresis (DGGE). The error rates were 4.4, 8.9, and 2.4 x 10(-5) errors/bp for modified T7, Taq, and Tli polymerase, respectively. Reducing the nucleotide triphosphate concentration for Tli polymerase during PCR did not alter the fidelity. The ability of DGGE to detect a mutant present at several percent in a wild type population is related to the polymerase fidelity. To examine the sensitivity of mutant detection, human genomic DNA containing a 1% fraction of a known base pair substitution mutant was PCR-amplified with the three enzymes using primers that flank the mutant sequence. The PCR products were analyzed by DGGE. The signal from the mutant present at 1% was visible in the samples amplified with modified T7 and Tli polymerase, but the higher error rate of Taq polymerase did not permit visualization of the signal in DNA amplified with Taq polymerase.  相似文献   

4.
To determine whether cellular replication factors can influence the fidelity of DNA replication, the effect of HeLa cell single-stranded DNA-binding protein (SSB) on the accuracy of DNA replication by HeLa cell DNA polymerase alpha has been examined. An in vitro gap-filling assay, in which the single-stranded gap contains the supF target gene, was used to measure mutagenesis. Addition of SSB to the in vitro DNA synthesis reaction increased the accuracy of DNA polymerase alpha by 2- to 8-fold. Analysis of the products of DNA synthesis indicated that SSB reduces pausing by the polymerase at specific sites in the single-stranded supF template. Sequence analysis of the types of errors resulting from synthesis in the absence or presence of SSB reveals that, while the errors are primarily base substitutions under both conditions, SSB reduces the number of errors found at 3 hotspots in the supF gene. Thus, a cellular replication factor (SSB) can influence the fidelity of a mammalian DNA polymerase in vitro, suggesting that the high accuracy of cellular DNA replication may be determined in part by the interaction between replication factors, DNA polymerase and the DNA template in the replication complex.  相似文献   

5.
We have determined the fidelity of DNA synthesis by DNA polymerase I (yPol I) from Saccharomyces cerevisiae. To determine whether subunits other than the polymerase catalytic subunit influence fidelity, we measured the accuracy of yPol I purified by conventional procedures, which yields DNA polymerase with a partially proteolyzed catalytic subunit and no associated primase activity, and that of yPol I purified by immunoaffinity chromatography, which yields polymerase having a single high-molecular-weight species of the catalytic subunit, as well as three additional polypeptides and DNA primase activity. In assays that score polymerase errors within the lacZ alpha-complementation gene in M13mp2 DNA, yPol I and the yPol I-primase complex produced single-base substitutions, single-base frameshifts, and larger deletions. For specific errors and template positions, the two forms of polymerase exhibited differences in fidelity that could be as large as 10-fold. Nevertheless, results for the overall error frequency and the spectrum of errors suggest that the yPol I-DNA primase complex is not highly accurate and that, just as for the polymerase alone, its fidelity is not sufficient to account for a low spontaneous mutation rate in vivo. The specificity data also suggest models to explain -1 base frameshifts in nonrepeated sequences and certain complex deletions by a direct repeat mechanism involving aberrant loop-back synthesis.  相似文献   

6.
We measured the insertion fidelity of DNA polymerases alpha and beta and yeast DNA polymerase I at a template site that was previously observed to yield a high frequency of T----G transversions when copied by DNA polymerase beta but not by the other two polymerases. The results provide direct biochemical evidence that base substitution errors by DNA polymerase beta can result from a dislocation mechanism governed by DNA template-primer misalignment. In contrast to DNA polymerase beta, neither Drosophila DNA polymerase alpha nor yeast DNA polymerase I appear to misinsert nucleotides by a dislocation mechanism in either the genetic or kinetic fidelity assays. Dislocation errors by DNA polymerase beta are characterized primarily by a substantial reduction in the apparent Km for inserting a "correct," but ultimately errant, nucleotide compared to the apparent Km governing direct misinsertion. For synthesis by DNA polymerase beta, dislocation results in a 35-fold increase in dCMP incorporation opposite template T (T----G transversion) and a 20-35-fold increase in dTMP incorporation opposite T (T----A transversion); these results are consistent with parallel genetic fidelity measurements. DNA polymerase beta also produces base substitution errors by direct misinsertion. Here nucleotide insertion fidelity results from substantial differences in both Km and Vmax for correct versus incorrect substrates and is influenced strongly by local base sequence.  相似文献   

7.
DNA polymerases contain active sites that are structurally superimposable and conserved in amino acid sequence. To probe the biochemical and structure-function relationship of DNA polymerases, a large library (200,000 members) of mutant Thermus aquaticus DNA polymerase I (Taq pol I) was created containing random substitutions within a portion of the dNTP binding site (Motif A; amino acids 605-617), and a fraction of all selected active Taq pol I (291 out of 8000) was tested for base pairing fidelity; seven unique mutants that efficiently misincorporate bases and/or extend mismatched bases were identified and sequenced. These mutants all contain substitutions of one specific amino acid, Ile-614, which forms part of the hydrophobic pocket that binds the base and ribose portions of the incoming nucleotide. Mutant Taq pol Is containing hydrophilic substitution I614K exhibit 10-fold lower base misincorporation fidelity, as well as a high propensity to extend mispairs. In addition, these low fidelity mutants containing hydrophilic substitution for Ile-614 can bypass damaged templates that include an abasic site and vinyl chloride adduct ethenoA. During polymerase chain reaction, Taq pol I mutant I614K exhibits an error rate that is >20-fold higher relative to the wild-type enzyme and efficiently catalyzes both transition and transversion errors. These studies have generated polymerase chain reaction-proficient mutant polymerases containing substitutions within the active site that confers low base pairing fidelity and a high error rate. Considering the structural and sequence conservation of Motif A, it is likely that a similar substitution will yield active low fidelity DNA polymerases that are mutagenic.  相似文献   

8.
The accuracy of DNA synthesis by DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus (Sso pol B1) at near the physiological temperature was investigated using M13-based mutational assays. Sso pol B1 showed replication fidelity similar to or higher than most viral, bacterial, and eukaryotic replicases. The fidelity of the enzyme was about three times as high at 70°C as at 55°C. Approximately two-thirds of the errors made by the enzyme were single-base substitutions, of which 58% were C → T transition. Frameshift mutations, mostly resulting from single-base deletions, accounted for 19% of the total errors. An exonuclease-deficient mutant of Sso pol B1 was three times as mutagenic as the wild-type enzyme, suggesting that the intrinsic proofreading function contributed only modestly to the fidelity of the enzyme. Kinetic assays showed that the frequencies of all possible misincorporations by an exonuclease-deficient triple-point mutant of Sso pol B1 ranged from 5.4 × 10−5 to 4.6 × 10−4. The high fidelity of this enzyme in DNA synthesis was based primarily on K m difference rather than V max difference. These properties of Sso pol B1 are consistent with the proposed role of the enzyme as a replicase in S. solfataricus.  相似文献   

9.
The high fidelity of chick embryo DNA polymerase-gamma (pol-gamma) observed during in vitro DNA synthesis (Kunkel, T. A. (1985) J. Biol. Chem. 260, 12866-12874) has led us to examine this DNA polymerase for the presence of an exonuclease activity capable of proofreading errors. Highly purified chick embryo pol-gamma preparations do contain exonuclease activity capable of digesting radiolabeled DNA in a 3'----5' direction, releasing deoxynucleoside 5'-monophosphates. The polymerase and exonuclease activities cosediment during centrifugation in a glycerol gradient containing 0.5 M KCl. In the absence of dNTP substrates, this exonuclease excises both matched and mismatched primer termini, with a preference for mismatched bases. Excision is inhibited by the addition of nucleoside 5'-monophosphates to the digestion reaction. In the presence of dNTP substrates to permit competition between excision and polymerization from the mismatched primer, the exonuclease excises mismatched bases from preformed terminal mispairs with greater than 98% efficiency. The preference for excision over polymerization can be diminished by addition of either high concentrations of dNTP substrates or nucleoside 5'-monophosphates to the exonuclease/polymerase reaction. To determine if this exonuclease is capable of proofreading misinsertions produced during a normal polymerization reaction, a sensitive base substitution fidelity assay was developed based on reversion of an M13mp2 lacZ alpha nonsense codon. In this assay using reaction conditions that permit highly active exonucleolytic proofreading, pol-gamma exhibits a fidelity of less than one error for every 260,000 bases polymerized. As for terminal mismatch excision, fidelity is reduced by the addition to the synthesis reaction of high concentrations of dNTP substrates or nucleoside 5'-monophosphates, both hallmarks of exonucleolytic proofreading by prokaryotic enzymes. Taken together, these observations suggest that the 3'----5' exonuclease present in highly purified chick embryo pol-gamma preparations proofreads base substitution errors during DNA synthesis. It remains to be determined if the polymerase and exonuclease activities reside in the same or different polypeptides.  相似文献   

10.
The fidelity of DNA synthesis by an exonuclease-proficient DNA polymerase results from the selectivity of the polymerization reaction and from exonucleolytic proofreading. We have examined the contribution of these two steps to the fidelity of DNA synthesis catalyzed by the large Klenow fragment of Escherichia coli DNA polymerase I, using enzymes engineered by site-directed mutagenesis to inactivate the proofreading exonuclease. Measurements with two mutant Klenow polymerases lacking exonuclease activity but retaining normal polymerase activity and protein structure demonstrate that the base substitution fidelity of polymerization averages one error for each 10,000 to 40,000 bases polymerized, and can vary more than 30-fold depending on the mispair and its position. Steady-state enzyme kinetic measurements of selectivity at the initial insertion step by the exonuclease-deficient polymerase demonstrate differences in both the Km and the Vmax for incorrect versus correct nucleotides. Exonucleolytic proofreading by the wild-type enzyme improves the average base substitution fidelity by 4- to 7-fold, reflecting efficient proofreading of some mispairs and less efficient proofreading of others. The wild-type polymerase is highly accurate for -1 base frameshift errors, with an error rate of less than or equal to 10(-6). The exonuclease-deficient polymerase is less accurate, suggesting that proofreading also enhances frameshift fidelity. Even without a proofreading exonuclease, Klenow polymerase has high frameshift fidelity relative to several other DNA polymerases, including eucaryotic DNA polymerase-alpha, an exonuclease-deficient, 4-subunit complex whose catalytic subunit is almost three times larger. The Klenow polymerase has a large (46 kDa) domain containing the polymerase active site and a smaller (22 kDa) domain containing the active site for the 3'----5' exonuclease. Upon removal of the small domain, the large polymerase domain has altered base substitution error specificity when compared to the two-domain but exonuclease-deficient enzyme. It is also less accurate for -1 base errors at reiterated template nucleotides and for a 276-nucleotide deletion error. Thus, removal of a protein domain of a DNA polymerase can affect its fidelity.  相似文献   

11.
We are investigating the mechanisms for producing or avoiding errors during DNA synthesis catalyzed by DNA replication and repair proteins purified from eukaryotic sources. Using assays that monitor the fidelity of a single round of DNA synthesis in vitro, we have defined the error frequency and mutational specificity of the four classes of animal cell DNA polymerases (alpha, beta, delta, gamma), and the fidelity of an SV40 origin-dependent DNA replication complex in extracts of HeLa cells.  相似文献   

12.
A thermostable DNA polymerase which possesses an associated 3'-to-5' exonuclease (proofreading) activity has been isolated from the hyperthermophilic archaebacterium, Pyrococcus furiosus (Pfu). To test its fidelity, we have utilized a genetic assay that directly measures DNA polymerase fidelity in vitro during the polymerase chain reaction (PCR). Our results indicate that PCR performed with the DNA polymerase purified from P. furiosus yields amplification products containing less than 10% of the number of mutations obtained from similar amplifications performed with Taq DNA polymerase. The PCR fidelity assay is based on the amplification and cloning of lacI, lacO and lacZ alpha gene sequences (lacIOZ alpha) using either Pfu or Taq DNA polymerase. Certain mutations within the lacI gene inactivate the Lac repressor protein and permit the expression of beta Gal. When plated on a chromogenic substrate, these LacI- mutants exhibit a blue-plaque phenotype. These studies demonstrate that the error rate per nucleotide induced in the 182 known detectable sites of the lacI gene was 1.6 x 10(-6) for Pfu DNA polymerase, a greater than tenfold improvement over the 2.0 x 10(-5) error rate for Taq DNA polymerase, after approx. 10(5)-fold amplification.  相似文献   

13.
Fidelity of mammalian DNA replication and replicative DNA polymerases.   总被引:11,自引:0,他引:11  
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We isolated active mutants in Saccharomyces cerevisiae DNA polymerase alpha that were associated with a defect in error discrimination. Among them, L868F DNA polymerase alpha has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase alpha. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase alpha-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase alpha catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3' T 26000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase eta, and the F34L mutant of S. cerevisiae DNA polymerase eta has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase alpha is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes.  相似文献   

15.
Eukaryotic replication begins at origins and on the lagging strand with RNA-primed DNA synthesis of a few nucleotides by polymerase alpha, which lacks proofreading activity. A polymerase switch then allows chain elongation by proofreading-proficient pol delta and pol epsilon. Pol delta and pol epsilon are essential, but their roles in replication are not yet completely defined . Here, we investigate their roles by using yeast pol alpha with a Leu868Met substitution . L868M pol alpha copies DNA in vitro with normal activity and processivity but with reduced fidelity. In vivo, the pol1-L868M allele confers a mutator phenotype. This mutator phenotype is strongly increased upon inactivation of the 3' exonuclease of pol delta but not that of pol epsilon. Several nonexclusive explanations are considered, including the hypothesis that the 3' exonuclease of pol delta proofreads errors generated by pol alpha during initiation of Okazaki fragments. Given that eukaryotes encode specialized, proofreading-deficient polymerases with even lower fidelity than pol alpha, such intermolecular proofreading could be relevant to several DNA transactions that control genome stability.  相似文献   

16.
To determine the contribution that DNA polymerase alpha makes to the overall DNA replication fidelity in mammalian systems, we measured the fidelity of replication of the SV40-based shuttle vector, pZ189, in a reconstituted in vitro DNA replication system which contained purified HeLa DNA polymerase alpha (in addition to single-stranded DNA binding protein, topoisomerase II, DNA ligase, 5'----3' exonuclease, ribonuclease H, and SV40 T-antigen). We found that DNA polymerase alpha is highly accurate when carrying out bidirectional replication in this system. This high fidelity of replication by DNA polymerase alpha in the reconstituted replication system contrasts with a relatively low fidelity of gap-filling DNA synthesis on the same target gene by purified HeLa cell DNA polymerase alpha in the absence of other replication factors. The fidelity of DNA replication by DNA polymerase alpha, although relatively high in the reconstituted system, is about 4-fold lower than DNA replication in a crude HeLa cell extract which contains additional replication factors including DNA polymerase delta. These results demonstrate that DNA polymerase alpha has the capacity to replicate DNA with high fidelity when carrying out semiconservative DNA replication in a minimal reconstituted replication system, but additional cellular factors not present in the reconstituted system may contribute to the higher replication fidelity of the crude system.  相似文献   

17.
We have purified wild type and exonuclease-deficient four-subunit DNA polymerase epsilon (Pol epsilon) complex from Saccharomyces cerevisiae and analyzed the fidelity of DNA synthesis by the two enzymes. Wild type Pol epsilon synthesizes DNA accurately, generating single-base substitutions and deletions at average error rates of 5' exonuclease activity is less accurate to a degree suggesting that wild type Pol epsilon proofreads at least 92% of base substitution errors and at least 99% of frameshift errors made by the polymerase. Surprisingly the base substitution fidelity of exonuclease-deficient Pol epsilon is severalfold lower than that of proofreading-deficient forms of other replicative polymerases. Moreover the spectrum of errors shows a feature not seen with other A, B, C, or X family polymerases: a high proportion of transversions resulting from T.dTTP, T.dCTP, and C.dTTP mispairs. This unique error specificity and amino acid sequence alignments suggest that the structure of the polymerase active site of Pol epsilon differs from those of other B family members. We observed both similarities and differences between the spectrum of substitutions generated by proofreading-deficient Pol epsilon in vitro and substitutions occurring in vivo in a yeast strain defective in Pol epsilon proofreading and DNA mismatch repair. We discuss the implications of these findings for the role of Pol epsilon polymerase activity in DNA replication.  相似文献   

18.
Bulk replicative DNA synthesis in eukaryotes is highly accurate and efficient, primarily because of two DNA polymerases (Pols): Pols δ and ε. The high fidelity of these enzymes is due to their intrinsic base selectivity and proofreading exonuclease activity which, when coupled with post-replication mismatch repair, helps to maintain human mutation rates at less than one mutation per genome duplication. Conditions that reduce polymerase fidelity result in increased mutagenesis and can lead to cancer in mice. Whereas yeast Pol ε has been well characterized, human Pol ε remains poorly understood. Here, we present the first report on the fidelity of human Pol ε. We find that human Pol ε carries out DNA synthesis with high fidelity, even in the absence of its 3'→5' exonucleolytic proofreading and is significantly more accurate than yeast Pol ε. Though its spectrum of errors is similar to that of yeast Pol ε, there are several notable exceptions. These include a preference of the human enzyme for T→A over A→T transversions. As compared with other replicative DNA polymerases, human Pol ε is particularly accurate when copying homonucleotide runs of 4-5 bases. The base pair substitution specificity and high fidelity for frameshift errors observed for human Pol ε are distinct from the errors made by human Pol δ.  相似文献   

19.
Pol I is the most abundant polymerase in E. coli and plays an important role in short patch repair. In accord with this role in the cell, the purified polymerase exhibits low processivity and high fidelity in vitro. Pol I is also the polymerase responsible for leader strand synthesis during ColE1 plasmid replication. In a previous publication, we described the generation of a highly error-prone DNA polymerase I. Expression of this mutant Pol I results in errors during the replication of a ColE1 plasmid. The distribution and spectrum of mutations in the ColE1 plasmid sequence downstream the ori indicates that Pol I is capable of more processive replication in vivo than previously accepted. Here, we review evidence suggesting that Pol I may be recruited into a replisome-like holoenzyme and speculate that processive DNA replication by Pol I in the cell may play a role in recombination-dependent DNA replication.  相似文献   

20.
Pol I is the most abundant polymerase in E. coli and plays an important role in short patch repair. In accord with this role in the cell, the purified polymerase exhibits low processivity and high fidelity in vitro. Pol I is also the polymerase responsible for leader strand synthesis during ColE1 plasmid replication. In a previous publication, we described the generation of a highly error-prone DNA polymerase I. Expression of this mutant Pol I results in errors during the replication of a ColE1 plasmid. The distribution and spectrum of mutations in the ColE1 plasmid sequence downstream the ori indicates that Pol I is capable of more processive replication in vivo than previously accepted. Here, we review evidence suggesting that Pol I may be recruited into a replisome-like holoenzyme and speculate that processive DNA replication by Pol I may play a role in recombination-dependent DNA replication in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号