首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two Epstein-Barr virus (EBV) types, EBV-1 and EBV-2, are known to differ in their EBNA-2 genes, which are 64 and 53% identical in their nucleotide and predicted amino acid sequences, respectively. Restriction endonuclease maps and serologic analyses detect few other differences between EBV-1 and EBV-2 except in the EBNA-3 gene family. We determined the DNA sequence of the AG876 EBV-2 EBNA-3 coding region and have compared it with known B95-8 EBV-1 EBNA-3 sequences to delineate the extent of divergence between EBV-1 and EBV-2 isolates in their EBNA-3 genes. The B95-8 and AG876 EBV isolates had nucleotide and amino acid identity levels of 90 and 84%, 88 and 80%, and 81 and 72% for the EBNA-3A, -3B, and -3C genes, respectively. In contrast, nucleotide sequence identity in the noncoding DNA adjacent to the B95-8 and AG876 EBNA-3 open reading frames was 96%. We used the polymerase chain reaction to demonstrate that five additional EBV-1 isolates and six additional EBV-2 isolates have the type-specific differences in their EBNA-3 genes predicted from the B95-8 or AG876 sequences. Thus, EBV-1 and EBV-2 are two distinct wild-type EBV strains that have significantly diverged at four genetic loci and have maintained type-characteristic differences at each locus. The delineation of these sequence differences between EBV-1 and EBV-2 is essential to ongoing molecular dissection of the biologic properties of EBV and of the human immune response to EBV infection. The application of these data to the delineation of epitopes recognized in the EBV-immune T-cell response is also discussed.  相似文献   

2.
3.
Dominant-negative inhibitors of EBNA-1 of Epstein-Barr virus.   总被引:9,自引:4,他引:5       下载免费PDF全文
  相似文献   

4.
Functional domains of Epstein-Barr virus nuclear antigen EBNA-1.   总被引:25,自引:18,他引:7  
  相似文献   

5.
The Epstein-Barr virus (EBV) genome can persist in dividing human B cells as multicopy circular episomes. Viral episomes replicate in synchrony with host cell DNA and are maintained at a relatively constant copy number for a long time. Only two viral elements, the replication origin OriP and the EBNA-1 protein, are required for the persistence of viral genomes during latency. EBNA-1 activates OriP during the S phase and may also contribute to the partition and/or retention of viral genomes during mitosis. Indeed, EBNA-1 has been shown to interact with mitotic chromatin. Moreover, viral genomes are noncovalently associated with metaphase chromosomes. This suggests that EBNA-1 may facilitate the anchorage of viral genomes on cellular chromosomes, thus ensuring proper partition and retention. In the present paper, we have investigated the chromosome-binding activity of EBV EBNA-1, herpesvirus papio (HVP) EBNA-1, and various derivatives of EBV EBNA-1, fused to a variant of the green fluorescent protein. The results show that binding to metaphase chromosomes is a common property of EBV and HVP EBNA-1. Further studies indicated that at least three independent domains (CBS-1, -2, and -3) mediate EBNA-1 binding to metaphase chromosomes. In agreement with the anchorage model, two of these domains mapped to a region that has been previously demonstrated to be required for the long-term persistence of OriP-containing plasmids.  相似文献   

6.

Background  

Sequencing of the human genome has led to most genes being available in BAC or PAC vectors. However, limited functional information has been assigned to most of these genes. Techniques for the manipulation and transfer of complete functional units on large DNA fragments into human cells are crucial for the analysis of complete genes in their natural genomic context. One limitation of the functional studies using these vectors is the low transfection frequency.  相似文献   

7.
8.

Background

Several genetic and environmental factors have been linked to Systemic Lupus Erythematosus (SLE). One environmental trigger that has a strong association with SLE is the Epstein Barr Virus (EBV). Our laboratory previously demonstrated that BALB/c mice expressing the complete EBNA-1 protein can develop antibodies to double stranded DNA (dsDNA). The present study was undertaken to understand why anti-dsDNA antibodies arise during the immune response to EBNA-1.

Methodology/Principal Findings

In this study, we demonstrated that mouse antibodies elicited in response to EBNA-1 cross-react with dsDNA. First, we showed that adsorption of sera reactive with EBNA-1 and dsDNA, on dsDNA cellulose columns, diminished reactivity with EBNA-1. Next, we generated mononclonal antibodies (MAbs) to EBNA-1 and showed, by several methods, that they also reacted with dsDNA. Examination of two cross-reactive MAbs—3D4, generated in this laboratory, and 0211, a commercial MAb—revealed that 3D4 recognizes the carboxyl region of EBNA-1, while 0211 recognizes both the amino and carboxyl regions. In addition, 0211 binds moderately well to the ribonucleoprotein, Sm, which has been reported by others to elicit a cross-reactive response with EBNA-1, while 3D4 binds only weakly to Sm. This suggests that the epitope in the carboxyl region may be more important for cross-reactivity with dsDNA while the epitope in the amino region may be more important for cross-reactivity with Sm.

Conclusions/Significance

In conclusion, our results demonstrate that antibodies to the EBNA-1 protein cross-react with dsDNA. This study is significant because it demonstrates a direct link between the viral antigen and the development of anti-dsDNA antibodies, which are the hallmark of SLE. Furthermore, it illustrates the crucial need to identify the epitopes in EBNA-1 responsible for this cross-reactivity so that therapeutic strategies can be designed to mask these regions from the immune system following EBV exposure.  相似文献   

9.
Epstein-Barr virus nuclear antigen 1 (EBNA-1) is a multi-functional protein of the Epstein-Barr virus (EBV). Due to its low abundance in EBV-transformed cells, overproduction in a foreign host is preferred to obtain purified EBNA-1 protein. The EBNA-1 gene possesses a large number of Escherichia coli rare codons (23%). By using E. coli BL21(DE3)Rosetta2 cells that augment the low-abundance tRNA genes, the expression level of EBNA-1 in E. coli was greatly enhanced. EBNA-1 was then purified by applying the whole cell extract soluble fraction to a Ni-NTA Superflow column and eluting with an imidazole gradient. The improved overexpression in E. coli followed by a one-step Ni-NTA purification resulted in a sufficient amount of pure EBNA-1 protein to test DNA binding activity, and prepare and test EBNA-1-specific monoclonal antibodies (mAbs).  相似文献   

10.
11.
12.
13.
14.
In an attempt to determine the relationship between the Epstein–Barr virus nuclear antigen-1 (EBNA-1) expression level and specific foreign protein productivity (qp), EBNA-1-amplifed HEK293 cells, which achieved a higher EBNA-1 expression level than that achieved by HEK293E cells, were established using dihydrofolate reductase (dhfr)-mediated gene amplification. Compared with a control culture in a null pool, Fc-fusion protein production by transient transfection in the EBNA-1-amplified pool showed a significant improvement. qp was linearly correlated with the EBNA-1 expression level in the transient transfection of EBNA-1-amplified clones, as indicated by the correlation coefficient (R2 = 0.7407). The Fc-fusion protein production and qp in a transient gene expression-based culture with EBNA-1-amplified HEK293 cells, E-amp-68, were approximately 2.0 and 3.2 times, respectively, higher than those in a culture with HEK293E cells. The increase in qp by EBNA-1 amplification mainly resulted from an enhancement in the amount of replicated DNA and level of mRNA expression but not an improved transfection efficiency. Taken together, it was found that EBNA-1 amplification could improve the therapeutic protein production in an HEK293 cell-based transient gene expression system.  相似文献   

15.
Applied Microbiology and Biotechnology - Despite the relatively low transfection efficiency and low specific foreign protein productivity (qp) of Chinese hamster ovary (CHO) cell-based transient...  相似文献   

16.
17.
BACKGROUND: The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been explored as a gene delivery vehicle for a variety of mammalian cell lines. However, the transient expression nature due to its incapability to replicate in mammalian cells and insufficient transduction efficiency limit its application. METHODS: Recombinant baculovirus vectors containing genetic elements from Epstein-Barr virus (EBV), OriP and EBNA-1, which are essential for the episomal maintenance of the EBV genome in latently infected cells, were constructed and tested for their ability to sustain and express transgene (enhanced green fluorescence protein (egfp)) in mammalian cells. RESULTS: The recombinant baculovirus containing OriP and EBNA-1 genes driven by the cytomegalovirus (CMV) promoter was capable of persisting in a significant proportion of infected mammalian cells, HEK293, Vero, Cos-7, and Hone-1, without any selective pressure. In HEK293, the expression of EGFP lasted for 60 days with markedly enhanced expression level. The persistence of baculovirus genome correlated with the expression of EBNA-1. CONCLUSIONS: The improved baculovirus vector could mediate prolonged and enhanced foreign gene expression in some mammalian cells. Furthermore, an adequate level of the EBNA-1 protein was essential for the maintenance of the OriP-containing baculovirus genome. The new vector has potential for use in gene therapy.  相似文献   

18.
Recombinant Epstein-Barr viruses (EBV) with a translation termination codon mutation inserted into the nuclear protein 3A (EBNA-3A) or 3C (EBNA-3C) open reading frame were generated by second-site homologous recombination. These mutant viruses were used to infect primary B lymphocytes to assess the requirement of EBNA-3A or -3C for growth transformation. The frequency of obtaining transformants infected with a wild-type EBNA-3A recombinant EBV was 10 to 15%. In contrast, the frequency of obtaining transformants infected with a mutant EBNA-3A recombinant EBV was only 1.4% (9 mutants in 627 transformants analyzed). Transformants infected with mutant EBNA-3A recombinant virus could be obtained only by coinfection with another transformation-defective EBV which provided wild-type EBNA-3A in trans. Cells infected with mutant EBNA-3A recombinant virus lost the EBNA-3A mutation with expansion of the culture. The decreased frequency of recovery of the EBNA-3A mutation, the requirement for transformation-defective EBV coinfection, and the inability to maintain the EBNA-3A mutation indicate that EBNA-3A is essential or critical for lymphocyte growth transformation and that the EBNA-3A mutation has a partial dominant negative effect. Five transformants infected with mutant EBNA-3C recombinant virus EBV were also identified and expanded. All five also required wild-type EBNA-3C in trans. Serial passage of the mutant recombinant virus into primary B lymphocytes resulted in transformants only when wild-type EBNA-3C was provided in trans by coinfection with a transformation-defective EBV carrying a wild-type EBNA-3C gene. A secondary recombinant virus in which the mutated EBNA-3C gene was replaced by wild-type EBNA-3C was able to transform B lymphocytes. Thus, EBNA-3C is also essential or critical for primary B-lymphocyte growth transformation.  相似文献   

19.
The Epstein-Barr nuclear antigen-1 (EBNA-1) is a protein containing a large glycine-alanine repeat that has been shown to be antigenic. Antibodies to EBNA-1 can be detected by means of immunoblotting. Preincubation of antisera with purified EBNA-1 protein inhibits the binding of IgG antibodies in this system, indicating that those epitopes detected by immunoblots are also accessible on the native molecule. A number of synthetic peptides the sequences of which were derived from the glycine-alanine repeating region of EBNA-1 and from regions adjacent to it also inhibited antibody binding to EBNA-1. These showed, however, a 1000-fold variation in their inhibitory activities. Peptides containing only glycine and alanine were the most effective inhibitors. The anti-EBNA-1 antibodies did not react with several other peptides representing sequences from unrelated proteins. At saturating concentrations of peptide 85 to 100% of anti-EBNA-1, antibody binding was inhibited in all sera tested with one exception. Similar results are obtained when antibody binding is assayed by an enzyme immunosorbent assay by using partially purified EBNA-1 to coat the plates. Thus the glycine-alanine region, either through its primary structure or through conformations assumed by this region, forms the major epitope(s) of the EBNA-1 molecule.  相似文献   

20.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号