首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Plexins are a family of genes (A,B,C, and D) that are expressed in many organ systems. Plexins expressed in the immune system have been implicated in cell movement and cell-cell interaction during the course of an immune response. In this study, the expression pattern of Plexin-B2 and Plexin-D1 in dendritic cells (DCs), which are central in immune activation, was investigated. Plexin-B2 and Plexin-D1 are reciprocally expressed in myeloid and plasmacytoid DC populations. Plasmacytoid DCs have high Plexin-B2 but low Plexin-D1, while the opposite is true of myeloid DCs. Expression of Plexin-B2 and Plexin-D1 is modulated upon activation of DCs by TLR ligands, TNFα, and anti-CD40, again in a reciprocal fashion. Semaphorin3E, a ligand for Plexin-D1 and Plexin-B2, is expressed by T cells, and interestingly, is dramatically higher on Th2 cells and on DCs. The expression of Plexins and their ligands on DCs and T cells suggest functional relevance. To explore this, we utilized chimeric mice lacking Plxnb2 or Plxnd1. Absence of Plexin-B2 and Plexin-D1 on DCs did not affect the ability of these cells to upregulate costimulatory molecules or the ability of these cells to activate antigen specific T cells. Additionally, Plexin-B2 and Plexin-D1 were dispensable for chemokine-directed in-vitro migration of DCs towards key DC chemokines, CXCL12 and CCL19. However, the absence of either Plexin-B2 or Plexin-D1 on DCs leads to constitutive expression of IL-12/IL-23p40. This is the first report to show an association between Plexin-B2 and Plexin-D1 with the negative regulation of IL-12/IL-23p40 in DCs. This work also shows the presence of Plexin-B2 and Plexin-D1 on mouse DC subpopulations, and indicates that these two proteins play a role in IL-12/IL-23p40 production that is likely to impact the immune response.  相似文献   

2.
Dendritic cells (DCs) retrovirally transduced with IL-4 have recently been shown to inhibit murine collagen-induced arthritis and associated Th1 immune responses in vivo, but the mechanisms that underly these effects are not yet understood. In this report we demonstrate that IL-4-transduced DCs loaded with antigen led to lower T cell production of IFN-gamma, increased production of IL-4, and an attenuated, delayed type hypersensitivity response. We hypothesized that the ability of such DCs to regulate the Th1 immune response in vivo depends in part on their capacity to produce IL-12 and IL-23. Quantitative mRNA analysis revealed that IL-4-transduced DCs stimulated with CD40 ligand expressed higher levels of IL-12p35 mRNA, but lower levels of mRNA for IL-23p19 and the common subunit p40 found in both IL-12 and IL-23, compared with control DCs. These results, which indicate that expression of the IL-12 and IL-23 subunits is differentially regulated in IL-4-transduced DCs, were confirmed by ELISA of the IL-12 and IL-23 heterodimers. Thus, therapeutic suppression of Th1 -mediated autoimmunity (as recently shown in murine collagen-induced arthritis) and induction of Th2 responses in vivo by IL-4-transduced DCs occurs despite their potential to produce increased levels of IL-12, but could reflect, in part, decreased production of IL-23.  相似文献   

3.
Dendritic cells (DCs) have a major role in regulating immune responses, including tumor immunity and peripheral tolerance. In the present study, we identified novel functions of herbal medicines in DCs by screening 99 herbal medicines, most of which are among the 210 Chinese medicines approved by the Ministry of Health, Labour, and Welfare, Japan. Ethanol extracts were prepared, and a murine epidermal-derived Langerhans cell line, XS106, was used to screen the 99 extracts by analyzing major histocompatibility complex (MHC) class II expression. Amomi Semen (amomum seed), Polyporus (polyporus sclerotium), and Plantaginis Semen (plantago seed) potently activated XS106 and were selected for further analysis. The effects of these extracts on bone marrow-derived DCs (BM-DCs) generated in vitro were then analyzed using surface phenotype (MHC class II, CD80, and CD86) and interleukin (IL)-12p70 production as indicators. BM-DCs treated with Amomi Semen extract exhibited activated phenotypes and secreted IL-12p70. The activation level was similar to that induced by lipopolysaccharides. Finally, an E.G7-OVA tumor model (E.L4-OVA transfectant) was used to examine the anti-tumor effects of Amomi Semen extract. Vaccination of mice with a subcutaneous injection of BM-DCs treated with Amomi Semen extract and OVA peptide significantly inhibited the growth of tumor cells and prolonged survival time compared to controls. Furthermore, therapeutic effects were observed on established tumors. The inhibition rates for both the prophylactic and therapeutic protocols were comparable to those of lipopolysaccharides. These results indicate that Amomi Semen extract potently activate DCs and is potentially useful for DC vaccination.  相似文献   

4.
Inorganic arsenic, a well-known Nrf2 inducer, exerts immunosuppressive properties. In this context, we recently reported that the differentiation of human blood monocytes into immature dendritic cells (DCs), in the presence of low and noncytotoxic concentrations of arsenic, represses the ability of DCs to release key cytokines in response to different stimulating agents. Particularly, arsenic inhibits the expression of human interleukin-12 (IL-12, also named IL-12p70), a major proinflammatory cytokine that controls the differentiation of Th1 lymphocytes. In the present study, we determined if Nrf2 could contribute to these arsenic immunotoxic effects. To this goal, human monocyte-derived DCs were first differentiated in the absence of metalloid and then pretreated with arsenic just before DC stimulation with lipopolysaccharide (LPS). Under these experimental conditions, arsenic rapidly and stably activates Nrf2 and increases the expression of Nrf2 target genes. It also significantly inhibits IL-12 expression in activated DCs, at both mRNA and protein levels. Particularly, arsenic reduces mRNA levels of IL12A and IL12B genes which encodes the p35 and p40 subunits of IL-12p70, respectively. tert-Butylhydroquinone (tBHQ), a reference Nrf2 inducer, mimics arsenic effects and potently inhibits IL-12 expression. Genetic inhibition of Nrf2 expression markedly prevents the repression of both IL12 mRNA and IL-12 protein levels triggered by arsenic and tBHQ in human LPS-stimulated DCs. In addition, arsenic significantly reduces IL-12 mRNA levels in LPS-activated bone marrow-derived DCs from Nrf2+/+ mice but not in DCs from Nrf2−/− mice. Finally, we show that, besides IL-12, arsenic significantly reduces the expression of IL-23, another heterodimer containing the p40 subunit. In conclusion, our study demonstrated that arsenic represses IL-12 expression in human-activated DCs by specifically stimulating Nrf2 activity.  相似文献   

5.
Experimental studies in monkeys on the basis of ex vivo-generated, reinjected dendritic cells (DCs) allow investigations of primate DC biology in vivo. To study in vitro and in vivo properties of DCs with a reduced capacity to produce IL-12, we adapted findings obtained in vitro with human cells to the rhesus macaque model. Following exposure of immature monocyte-derived monkey DCs to the immunomodulating synthetic polypeptide glatiramer acetate (GA) and to dibutyryl-cAMP (d-cAMP; i.e., a cAMP enhancer that activates DCs but inhibits the induction of Th1 immune responses), the resulting DCs displayed a mature phenotype with enhanced Ag-specific T cell stimulatory function, notably also for memory Th1 cells. Phosphorylation of p38 MAPK was not induced in GA/d-cAMP-activated DCs. Accordingly, these cells secreted significantly less IL-12p40 (p < or = 0.001) than did cytokine-activated cells. However, upon restimulation with rhesus macaque CD154, GA/d-cAMP-activated DCs produced IL-12p40/IL-23. Additionally, DCs activated by proinflammatory cytokines following protocols for the generation of cells used in clinical studies secreted significantly more IL-23 upon CD154 restimulation than following prior activation. Two days after intradermal injection, GA/d-cAMP-activated fluorescence-labeled DCs were detected in the T cell areas of draining lymph nodes. When similarly injected, GA/d-cAMP as well as cytokine-activated protein-loaded DCs induced comparable Th immune responses characterized by secretion of IFN-gamma, TNF, and IL-17, and transiently expanded FOXP3(+) regulatory T cells. Reactivation of primate DCs through CD154 considerably influences their immmunostimulatory properties. This may have a substantial impact on the development of innovative vaccine approaches.  相似文献   

6.
p40, the common subunit of the proinflammatory cytokines IL-12 and IL-23, is produced by resident skin cells. Whereas the in vivo effects of IL-12 are well established, little is known about the role of IL-23 in cutaneous immune responses. In this study we show that p40 transgenic (TG) mice constitutively produce IL-23 (p19/p40), but not IL-12 (p35/p40), in basal keratinocytes by cosecretion of TG p40 with endogenous p19. Repeated injections of rIL-23 in littermate (LM) mice result in an inflammatory skin disease similar to that of p40 TG mice, confirming the proinflammatory activity of IL-23. Furthermore, IL-23 secretion by p40 TG keratinocytes induces elevated numbers of Langerhans cells (LC) with a marked up-regulation of costimulatory molecules, indicating advanced maturation of keratin 14 (K14)/p40 LC when compared with LM LC. At the functional level, freshly isolated K14/p40 LC greatly exceeded LC from LM animals in their capacity to stimulate allogeneic T cell proliferation. To assess whether IL-23 regulates cutaneous immune responses in vivo, we used an allogeneic skin transplantation model. Full thickness skin grafts from K14/p40 donors (H-2(q)) transplanted across a MHC class I and class II barrier onto BALB/c (H-2(d)) recipients were rejected in a significantly accelerated fashion (mean survival time: 8.8 days) when compared with skin grafts from non-TG LM (H-2(q)) (mean survival time: 10.7 days, p < 0.01). Based on these results we propose that IL-23-induced changes of LC may be an important mechanism in directing the outcome of cutaneous immune responses.  相似文献   

7.
Nanoparticles are considered to be efficient tools for inducing potent immune responses by an Ag carrier. In this study, we examined the effect of Ag-carrying biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs) on the induction of immune responses in mice. The NPs were efficiently taken up by dendritic cells (DCs) and subsequently localized in the lysosomal compartments. gamma-PGA NPs strongly induced cytokine production, up-regulation of costimulatory molecules, and the enhancement of T cell stimulatory capacity in DCs. These maturational changes of DCs involved the MyD88-mediated NF-kappaB signaling pathway. In vivo, gamma-PGA NPs were preferentially internalized by APCs (DCs and macrophages) and induced the production of IL-12p40 and IL-6. The immunization of mice with OVA-carrying NPs induced Ag-specific CTL activity and Ag-specific production of IFN-gamma in splenocytes as well as potent production of Ag-specific IgG1 and IgG2a Abs in serum. Furthermore, immunization with NPs carrying a CD8(+) T cell epitope peptide of Listeria monocytogenes significantly protected the infected mice from death. These results suggest that Ag-carrying gamma-PGA NPs are capable of inducing strong cellular and humoral immune responses and might be potentially useful as effective vaccine adjuvants for the therapy of infectious diseases.  相似文献   

8.
IL-23 is a heterodimeric cytokine comprising a p19 subunit associated with the IL-12/23p40 subunit. Like IL-12, IL-23 is expressed predominantly by activated dendritic cells (DCs) and phagocytic cells, and both cytokines induce IFN-gamma secretion by T cells. The induction of experimental autoimmune encephalitis, the animal model of multiple sclerosis (MS), occurs in mice lacking IL-12, but not in mice with targeted disruption of IL-23 or both IL-12 and IL-23. Thus, IL-23 expression in DCs may play an important role in the pathogenesis of human autoimmune diseases such as MS. We quantified the expression of IL-23 in monocyte-derived DCs in MS patients and healthy donors and found that DCs from MS patients secrete elevated amounts of IL-23 and express increased levels of IL-23p19 mRNA. Consistent with this abnormality, we found increased IL-17 production by T cells from MS patients. We then transfected monocyte-derived DCs from healthy donors with antisense oligonucleotides specific for the IL-23p19 and IL-12p35 genes and found potent suppression of gene expression and blockade of bioactive IL-23 and IL-12 production without affecting cellular viability or DCs maturation. Inhibition of IL-23 and IL-12 was associated with increased IL-10 and decreased TNF-alpha production. Furthermore, transfected DCs were poor allostimulators in the MLR. Our results demonstrate that an abnormal Th1 bias in DCs from MS patients related to IL-23 exists, and that antisense oligonucleotides specific to IL-23 can be used for immune modulation by targeting DC gene expression.  相似文献   

9.
10.
11.
IL-23 is secreted by macrophages and dendritic cells in response to microbial products and inflammatory cytokines. IL-23 is a heterodimer composed of the unique IL-23p19 subunit linked to the common p40 subunit that it shares with IL-12. IL-23 is implicated in autoimmune diseases, where it supports the expansion of IL-17A-producing CD4+ Th17 cells. IL-23 also regulates granulopoiesis in a neutrostat regulatory feedback loop through IL-17A-producing neutrophil regulatory (Tn) cells, most of which express gammadelta TCR. This homeostatic system is disrupted in mice lacking adhesion molecules like beta2-integrins (Itgb2-/-) which have defective neutrophil trafficking and neutrophilia. To test the role of IL-23 in the homeostatic regulation of circulating neutrophil numbers, we measured blood neutrophil numbers in p40-deficient (IL12b-/-) mice and found them reduced compared with wild-type mice. IL12b-/-Itgb2-/- mice, lacking beta2-integrins, IL-12, and IL-23 showed significantly blunted neutrophilia compared with Itgb2-/- mice. Treatment of both IL12b-/- and IL12b-/-Itgb2-/- mice with IL-23, but not IL-12, restored circulating neutrophil counts. Serum levels of IL-17A were readily detectable in Itgb2-/- mice, but not in IL12b-/-Itgb2-/- mice, suggesting that IL-17A production is reduced when IL-23 is absent. Similarly, tissue mRNA expression of IL-17A was reduced in IL12b-/-Itgb2-/-mice compared with Itgb2-/- controls. The total number of CD3+ IL-17A-producing Tn cells were significantly reduced in the spleen and lamina propria of IL12b-/-Itgb2-/- mice, with the largest reduction found in gammadelta+ T cells. Our results suggest a prominent role of IL-23 in the regulation of granulopoiesis and the prevalence of IL-17A-producing Tn cells.  相似文献   

12.
13.
Dendritic cells (DC) are antigen-presenting cells essential for initiating primary immune responses and therefore an ideal target for viral immune evasion. Varicella-zoster virus (VZV) can productively infect immature human DCs and impair their function as immune effectors by inhibiting their maturation, as evidenced by the expression modulation of functionally important cell surface immune molecules CD80, CD86, CD83, and major histocompatibility complex I. The NF-κB pathway largely regulates the expression of these immune molecules, and therefore we sought to determine whether VZV infection of DCs modulates the NF-κB pathway. Nuclear localization of NF-κB p50 and p65 indicates pathway activation; however, immunofluorescence studies revealed cytoplasmic retention of these NF-κB subunits in VZV-infected DCs. Western blotting revealed phosphorylation of the inhibitor of κBα (IκBα) in VZV-infected DCs, indicating that the pathway is active at this point. We conclude that VZV infection of DC inhibits the NF-κB pathway following protein phosphorylation but before the translocation of NF-κB subunits into the nucleus. An NF-κB reporter assay identified VZV open reading frame 61 (ORF61) as an inhibitor of tumor necrosis factor alpha-induced NF-κB reporter activity. Mutational analysis of ORF61 identified the E3 ubiquitin ligase domain as a region required for NF-κB pathway inhibition. In summary, we provide evidence that VZV inhibits the NF-κB signaling pathway in human DCs and that the E3 ubiquitin ligase domain of ORF61 is required to modulate this pathway. Thus, this work identifies a mechanism by which VZV modulates host immune function.  相似文献   

14.
Dendritic cells (DCs) are considered the most efficient antigen-presenting cells and are therefore ideal targets for in vivo delivery of antigen for vaccines. We are investigating the strategy of using CD40 ligand (CD40L) as a targeting moiety because this protein has the potential to not only target DCs, but also stimulate cell maturation, leading to more potent immune responses. We have shown that a recombinant, monomeric CD40 ligand fusion protein conjugated to polystyrene micro- and nanoparticles led to significantly enhanced uptake by DCs in vitro. This enhancement was observed for particles of both sizes and in both a murine DC cell line and primary DCs. The uptake appeared to be specifically mediated by CD40L binding to CD40 expressed on DCs. Enhanced uptake of nanoparticles in draining lymph nodes of mice was not observed, however, 48 hours after subcutaneous injection. These findings suggest that CD40 ligand may be a potentially useful targeting moiety for delivery of particulate vaccines to DCs, and that further optimization of both CD40L and the polymer carriers is necessary to achieve efficacy in vivo.  相似文献   

15.
The uptake of an antigen and its presentation to specific T cells by dendritic cells (DCs) is a primary event in initiation of humoral and cellular immune responses as well as the induction of cytotoxic T cells (CTLs). DCs are induced by culturing bone marrow cells in the presence of GM-CSF. However, the resulting DCs are short-lived and the culture usually contains CD11c-negative non-DC cells, which adversely affects reproducibility and makes interpretation of the experimental results difficult. Therefore, it would be useful if DCs could be readily immortalized with their functions being retained. In this study we established a novel, immortalized murine DC line with antigen-presenting capacity in vitro as well as an augmenting effect on humoral and cellular immune responses in vivo, utilizing bone marrow cells from transgenic mice harboring the temperature-sensitive SV40 large T-antigen gene. In the presence of GM-CSF, the resulting DC line, termed SVDC, could be continuously subcultured for more than 12 months. When pulsed with OVA alone or OVA-IgG immune complexes via Fcgamma receptors, SVDC augmented OVA-specific T cell proliferation efficiently in vitro, and elicited OVA-specific IgG production in vivo on the adoptive transfer of pulsed SVDC into naive mice. Interestingly, SVDC exhibited significantly high cross-priming ability compared to DCs in a short-term culture, thus leading to their extremely high effectiveness in inducing anti-tumor immunity in vivo. Thus, SVDC is useful for the detailed characterization of antigen presentation, and for research on the various therapeutic benefits of DC vaccination to elicit specific immune responses in immunodeficiencies, infectious diseases and cancer.  相似文献   

16.
Human anaplasmosis is an emerging infectious disease transmitted by ticks that can be potentially fatal in the immunocompromised and the elderly. The mechanisms of defense against the causative agent, Anaplasma phagocytophilum, are not completely understood; however, interferon (IFN)-gamma plays an important role in pathogen clearance. Here, we show that IFN-gamma is regulated through an early IL-12/23p40-dependent mechanism. Interleukin (IL)-12/23p40 is regulated in macrophages and dendritic cells after activation by microbial agonists and cytokines and constitutes a subunit of IL-12 and IL-23. IL-12/23p40-deficient mice displayed an increased A. phagocytophilum burden, accelerated thrombocytopenia and increased neutrophil numbers in the spleen at day 6 postinfection. Infection of MyD88- and mitogen-activated kinase kinase 3 (MKK3)-deficient mice suggested that the early susceptibility due to IL-12/23p40 deficiency was not dependent on signaling through MyD88 or MKK3. The lack of IL-12/23p40 reduced IFN-gamma production in both CD4(+) and CD8(+) T cells although the effect was more pronounced in CD4(+) T cells. Our data suggest that the immune response against A. phagocytophilum is a multifactorial and cooperative process. The IL-12/23p40 subunit drives the CD4(+) Th1 immune response in the early phase of infection and IL-12/23p40-independent mechanisms ultimately contribute to pathogen elimination from the host.  相似文献   

17.
18.
Fas ligand (FasL) has the potential to induce inflammation accompanied by massive neutrophil infiltration. We previously reported that FasL rapidly induces the production of various inflammatory cytokines including IL-1beta and IL-17. In this study, we investigated the mechanism of the FasL-induced IL-17 production. We found that the culture supernatant of mouse resident peritoneal exudate cells (PEC) cocultured with FasL-expressing tumor (FFL) cells induced IL-17 production in freshly isolated resident PEC. Anti-IL-1beta Ab strongly inhibited the IL-17-inducing activity. However, rIL-1beta by itself induced only weak IL-17 production. Intriguingly, anti-IL-12 Ab but not an IL-15-neutralizing agent, IL15R-Fc, strongly inhibited the FasL-induced IL-17-inducing activity. IL-23, which shares the p40 subunit with IL-12, but not IL-12 itself, induced IL-17 production synergistically with IL-1beta in resident PEC. FasL induced the production of IL-23 in PEC in vivo and in vitro, and IL-17 production following the i.p. injection of FFL cells was severely impaired in p40-/- mice, indicating that IL-23 plays an important role in the FasL-induced IL-17 production. FFL also induced the production of IL-23 in bone marrow- or PEC-derived dendritic cells (DCs). Finally, FasL induced only weak p40 production in a mixture of p40-/- and Fas-/- DC, indicating that FasL induces IL-23 production in DC mainly in a cell-autonomous manner.  相似文献   

19.
Alli RS  Khar A 《FEBS letters》2004,559(1-3):71-76
Dendritic cells (DCs) are known to modulate immune response by activating effector cells of both the innate and the adaptive immune system. In the present study, we demonstrate that co-culture of DCs with paraformaldehyde-fixed tumor cells augments the secretion of interleukin (IL)-12 by DCs and these activated DCs upon co-culture with naive NK cells enhance the cytolytic activity of NK cells against NK-sensitive target YAC-1. Similarly, DCs isolated from tumor-bearing animals also activated NK cells in vitro. For efficient activation of NK cells, the ratio of activated DCs to NK cells is crucial. Addition of anti-IL-12 antibody to the culture system completely abolished activation of NK cells by DCs, suggesting that IL-12 secreted by DCs is an essential factor in NK cell activation. Adoptive transfer of DCs isolated from tumor-bearing animals into normal rats also induced activation of NK cells in normal animals.  相似文献   

20.
AIMP1 (ARS-interacting multifunctional protein 1), previously known as p43, was initially identified as a factor associated with a macromolecular tRNA synthetase complex. Recently, we demonstrated that AIMP1 is also secreted and acts as a novel pleiotropic cytokine. In this study, we investigated whether AIMP1 induces the activation and maturation of murine bone marrow-derived dendritic cells (DCs). AIMP1-treated DCs exhibited up-regulated expression of cell-surface molecules, including CD40, CD86, and MHC class II. Additionally, microarray analysis and RT-PCR determinations indicated that the expression of known DC maturation genes also increased significantly following treatment with AIMP1. Treatment of DCs with AIMP1 resulted in a significant increase in IL-12 production and Ag-presenting capability, and it also stimulated the proliferation of allogeneic T cells. Importantly, AIMP1-treated DCs induced activation of Ag-specific Th type 1 (Th1) cells in vitro and in vivo. AIMP1-stimulated DCs significantly enhanced the IFN-gamma production of cocultured CD4+ T cells. Immunization of mice with keyhole limpet hemocyanin-pulsed AIMP1 DCs efficiently led to Ag-specific Th1 cell responses, as determined by flow cytometry and ELISA. The addition of a neutralizing anti-IL-12 mAb to the cell cultures that had been treated with AIMP1 resulted in the decreased production of IFN-gamma, thereby indicating that AIMP1-stimulated DCs may enhance the Th1 response through increased production of IL-12 by APCs. Taken together, these results indicate that AIMP1 protein induces the maturation and activation of DCs, which skew the immune response toward a Th1 response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号