首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi W  Stampas A  Zapata C  Baker NE 《Genetics》2003,165(4):1869-1879
Each ommatidium of the Drosophila eye is constructed by precisely 19 specified precursor cells, generated in part during a second mitotic wave of cell divisions that overlaps early stages of ommatidial cell specification. Homozygotes for the pineapple eye mutation lack sufficient precursor cells due to apoptosis during the period of fate specification. In addition development is delayed by apoptosis during earlier imaginal disc growth. Null alleles are recessive lethal and allelic to l(2)31Ek; heteroallelic combinations can show developmental delay, abnormal eye development, and reduced fertility. Mosaic clones autonomously show extensive cell death. The pineapple eye gene was identified and predicted to encode a novel 582-amino-acid protein. The protein contains a novel, cysteine-rich domain of 270 amino acids also found in predicted proteins of unknown function from other animals.  相似文献   

2.
Cell proliferation in the imaginal wing disc of Drosophila has been analyzed by both pulse and chronic labeling with [3H]thymidine. We find neither spatial nor temporal variation in the fraction of S phase cells during the third instar. At or near the time of white prepupae formation the fraction of S phase cells falls sharply. Our chronic labeling experiments have demonstrated that almost all (and perhaps all) of the cells in a mid third instar wing disc are cycling. By examining sectioned material from such experiments we have found that the collumnar epithelial cell and the adepithetial cell populations become labeled with similar kinetics. The peripodial membrane cell population becomes labeled more slowly. We have also obtained estimates of cell cycle parameters for the imaginal wing disc cells.  相似文献   

3.
4.
González A  Chaouiya C  Thieffry D 《Genetics》2006,174(3):1625-1634
The larval development of the Drosophila melanogaster wings is organized by the protein Wingless, which is secreted by cells adjacent to the dorsal-ventral (DV) boundary. Two signaling processes acting between the second and early third instars and between the mid- and late third instar control the expression of Wingless in these boundary cells. Here, we integrate both signaling processes into a logical multivalued model encompassing four cells, i.e., a boundary and a flanking cell at each side of the boundary. Computer simulations of this model enable a qualitative reproduction of the main wild-type and mutant phenotypes described in the experimental literature. During the first signaling process, Notch becomes activated by the first signaling process in an Apterous-dependent manner. In silico perturbation experiments show that this early activation of Notch is unstable in the absence of Apterous. However, during the second signaling process, the Notch pattern becomes consolidated, and thus independent of Apterous, through activation of the paracrine positive feedback circuit of Wingless. Consequently, we propose that appropriate delays for Apterous inactivation and Wingless induction by Notch are crucial to maintain the wild-type expression at the dorsal-ventral boundary. Finally, another mutant simulation shows that cut expression might be shifted to late larval stages because of a potential interference with the early signaling process.  相似文献   

5.
Jin Z  Homola E  Tiong S  Campbell SD 《Genetics》2008,180(4):2123-2133
Mitosis is triggered by activation of Cdk1, a cyclin-dependent kinase. Conserved checkpoint mechanisms normally inhibit Cdk1 by inhibitory phosphorylation during interphase, ensuring that DNA replication and repair is completed before cells begin mitosis. In metazoans, this regulatory mechanism is also used to coordinate cell division with critical developmental processes, such as cell invagination. Two types of Cdk1 inhibitory kinases have been found in metazoans. They differ in subcellular localization and Cdk1 target-site specificity: one (Wee1) being nuclear and the other (Myt1), membrane-associated and cytoplasmic. Drosophila has one representative of each: dMyt1 and dWee1. Although dWee1 and dMyt1 are not essential for zygotic viability, loss of both resulted in synthetic lethality, indicating that they are partially functionally redundant. Bristle defects in myt1 mutant adult flies prompted a phenotypic analysis that revealed cell-cycle defects, ectopic apoptosis, and abnormal responses to ionizing radiation in the myt1 mutant imaginal wing discs that give rise to these mechanosensory organs. Cdk1 inhibitory phosphorylation was also aberrant in these myt1 mutant imaginal wing discs, indicating that dMyt1 serves Cdk1 regulatory functions that are important both for normal cell-cycle progression and for coordinating mitosis with critical developmental processes.  相似文献   

6.
Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling   总被引:5,自引:0,他引:5  
Growth and patterning of the Drosophila wing imaginal disc depends on its subdivision into dorsoventral (DV) compartments and limb (wing) and body wall (notum) primordia. We present evidence that both the DV and wing-notum subdivisions are specified by activation of the Drosophila Epidermal Growth Factor Receptor (EGFR). We show that EGFR signaling is necessary and sufficient to activate apterous (ap) expression, thereby segregating the wing disc into D (ap-ON) and V (ap-OFF) compartments. Similarly, we demonstrate that EGFR signaling directs the expression of Iroquois Complex (Iro-C) genes in prospective notum cells, rendering them distinct from, and immiscible with, neighboring wing cells. However, EGFR signaling acts only early in development to heritably activate ap, whereas it is required persistently during subsequent development to maintain Iro-C gene expression. Hence, as the disc grows, the DV compartment boundary can shift ventrally, beyond the range of the instructive EGFR signal(s), in contrast to the notum-wing boundary, which continues to be defined by EGFR input.  相似文献   

7.
During development, it is essential for gene expression to occur in a very precise spatial and temporal manner. There are many levels at which regulation of gene expression can occur, and recent evidence demonstrates the importance of mRNA stability in governing the amount of mRNA that can be translated into functional protein. One of the most important discoveries in this field has been miRNAs (microRNAs) and their function in targeting specific mRNAs for repression. The wing imaginal discs of Drosophila are an excellent model system to study the roles of miRNAs during development and illustrate their importance in gene regulation. This review aims at discussing the developmental processes where control of gene expression by miRNAs is required, together with the known mechanisms of this regulation. These developmental processes include Hox gene regulation, developmental timing, growth control, specification of SOPs (sensory organ precursors) and the regulation of signalling pathways.  相似文献   

8.
The time during which β-ecdysone is required for the apolysis and imaginal differentiation of wing discs of Drosophila both in vitro and in situ has been examined, and it is concluded that β-ecdysone is required as a sustained stimulus rather than as a trigger for differentiation. These results are compared with the requirement for β-ecdysone for the puffing of salivary gland polytene chromosomes during the prepupal stage (Richards, G. P., 1976, Develop. Biol.48, 191–195). It is suggested that imaginal discs and larval salivary glands require different exposures to β-ecdysone to fulfill their developmental commitments and that the drop in β-ecdysone titer during the early prepupal stage, which is necessary for the subsequent puffing of the polytene chromosomes, plays little or no part in imaginal disc differentiation.  相似文献   

9.
Experimental data on spatial and temporal distributions of mosaic clones in Drosophila wing imaginal disc were analyzed. Long-lived proliferation centers (PR1, PR2, and PR3) and areas with decreased proliferation activity were found in the notum region of the disc. Simulation of the growth kinetics of mosaic patches demonstrated that the cell cycle in proliferation centers PR2 and PR3 was shorter than the average cycle in the disc and in the center PR1. A nonrandom clustering of rapidly dividing cells was observed in the PR2, but not in the other cases. The reason why the cell-cycle duration and the clustering of dividing cells may not coincide is discussed in terms of the recruitment of nondividing cells into the cell cycle. The simulation of the time course of the first and second moments of the size distribution of mosaic clones allowed the variance of cell-cycle progression rates to be determined and demonstrated that a model with a continuous cell-cycle rates gave a better fit to the data than the transition probability model of Smith and Martin.  相似文献   

10.
We have isolated the discs overgrown gene of Drosophila and shown that it encodes a homolog of the Casein kinase I(delta)/(epsilon) subfamily and is identical to the double-time gene. However, in contrast to the weak double-time alleles, which appear to affect only the circadian rhythm, discs overgrown alleles, including bona fide null alleles, show strong effects on cell survival and growth control in imaginal discs. Analysis of their phenotypes and molecular lesions suggests that the Discs overgrown protein is a crucial component in the mechanism that links cell survival during proliferation to growth arrest in imaginal discs. This work provides the first analysis in a multicellular organism of Casein kinase I(delta)/(epsilon) functions necessary for survival. Since the amino acid sequences and three-dimensional structures of Casein kinase I(delta)/(epsilon) enzymes are highly conserved, the results suggest that these proteins may also function in controlling cell growth and survival in other organisms.  相似文献   

11.
This study was undertaken to evaluate the range of 20-hydroxyecdysone (20HE) concentrations which induce cell proliferation and imaginal differentiation in lepidopteran wing discs in vitro . Wing discs were cultured in medium containing various doses of 20HE. During imaginal differentiation in vitro , wing discs were observed histologically and the number of mitosis was counted every day. Wing discs differentiated adult features in medium containing 0.02–0.2 μg/mL 20HE, and these doses also increased the number of mitosis in disc cells. Wing discs developed the same in vitro as they do in vivo . The concentration of 20HE over 0.2 μg/mL inhibited both mitosis and imaginal differentiation. Cell proliferation, cuticle deposition and tissue elongation were successively observed in vitro the same as observed in vivo . These results suggest that a moderate concentration of ecdysteroid can induce cell proliferation followed by imaginal differentiation.  相似文献   

12.
For animal development it is necessary that organs stop growing after they reach a certain size. However, it is still largely unknown how this termination of growth is regulated. The wing imaginal disc of Drosophila serves as a commonly used model system to study the regulation of growth. Paradoxically, it has been observed that growth occurs uniformly throughout the disc, even though Decapentaplegic (Dpp), a key inducer of growth, forms a gradient. Here, we present a model for the control of growth in the wing imaginal disc, which can account for the uniform occurrence and termination of growth. A central feature of the model is that net growth is not only regulated by growth factors, but by mechanical forces as well. According to the model, growth factors like Dpp induce growth in the center of the disc, which subsequently causes a tangential stretching of surrounding peripheral regions. Above a certain threshold, this stretching stimulates growth in these peripheral regions. Since the stretching is not completely compensated for by the induced growth, the peripheral regions will compress the center of the disc, leading to an inhibition of growth in the center. The larger the disc, the stronger this compression becomes and hence the stronger the inhibiting effect. Growth ceases when the growth factors can no longer overcome this inhibition. With numerical simulations we show that the model indeed yields uniform growth. Furthermore, the model can also account for other experimental data on growth in the wing disc.  相似文献   

13.
Drosophila melanogaster carrying the mutation apterous-blot have blistered wings. Trypan blue stains a patch of dead cells localized to the wing pouch of imaginal discs and the same area shows acid phosphatase (AcPase) activity suggesting that the cell death is lysosomal. Autophagic vacuoles and other secondary lysosomes show AcPase activity within the disc epithelium and enzyme activity is found in fragments of dead cells which have been extruded basally. The cell death, although extensive and confined to the presumptive wing region, does not result in loss of adult structures.  相似文献   

14.
The mechanisms that control organ growth are among the least known in development. This is particularly the case for the process in which growth is arrested once final size is reached. We have studied this problem in the wing disc of Drosophila, the developmental and growth parameters of which are well known. We have devised a method to generate entire fast-growing Minute(+) (M(+)) discs or compartments in slow developing Minute/+ (M/+) larvae. Under these conditions, a M(+) wing disc gains at least 20 hours of additional development time. Yet it grows to the same size of Minute/+ discs developing in M/+ larvae. We have also generated wing discs in which all the cells in either the anterior (A) or the posterior (P) compartment are transformed from M/+ to M(+). We find that the difference in the cell division rate of their cells is reflected in autonomous differences in the developmental progression of these compartments: each grows at its own rate and manifests autonomous regulation in the expression of the developmental genes wingless and vestigial. In spite of these differences, ;mosaic' discs comprising fast and slow compartments differentiate into adult wings of the correct size and shape. Our results demonstrate that imaginal discs possess an autonomous mechanism with which to arrest growth in anterior and posterior compartments, which behave as independent developmental units. We propose that this mechanism does not act by preventing cell divisions, but by lengthening the division cycle.  相似文献   

15.
16.
The gene homothorax (hth) is originally expressed uniformly in the wing imaginal disc but, during development, its activity is restricted to the cells that form the thorax and the hinge, where the wing blade attaches to the thorax, and eliminated in the wing pouch, which forms the wing blade. We show that hth repression in the wing pouch is a prerequisite for wing development; forcing hth expression prevents growth of the wing blade. Both the Dpp and the Wg pathways are involved in hth repression. Cells unable to process the Dpp (lacking thick veins or Mothers against Dpp activity) or the Wg (lacking dishevelled function) signal express hth in the wing pouch. We have identified vestigial (vg) as a Wg and Dpp response factor that is involved in hth control. In contrast to its repressing role in the wing pouch, wg upregulates hth expression in the hinge. We have also identified the gene teashirt (tsh) as a positive regulator of hth in the hinge. tsh plays a role specifying hinge structures, possibly in co-operation with hth.  相似文献   

17.
During animal development, organ size is determined primarily by the amount of cell proliferation, which must be tightly regulated to ensure the generation of properly proportioned organs. However, little is known about the molecular pathways that direct cells to stop proliferating when an organ has attained its proper size. We have identified mutations in a novel gene, shar-pei, that is required for proper termination of cell proliferation during Drosophila imaginal disc development. Clones of shar-pei mutant cells in imaginal discs produce enlarged tissues containing more cells of normal size. We show that this phenotype is the result of both increased cell proliferation and reduced apoptosis. Hence, shar-pei restricts cell proliferation and promotes apoptosis. By contrast, shar-pei is not required for cell differentiation and pattern formation of adult tissue. Shar-pei is also not required for cell cycle exit during terminal differentiation, indicating that the mechanisms directing cell proliferation arrest during organ growth are distinct from those directing cell cycle exit during terminal differentiation. shar-pei encodes a WW-domain-containing protein that has homologs in worms, mice and humans, suggesting that mechanisms of organ growth control are evolutionarily conserved.  相似文献   

18.
A new method for modelling cell division is reported which uses a cellular representation based on graph theory. This allows us to model the adjacencies of non-regular dividing cells accurately, avoiding the rigid geometrical constraints present in earlier simulations. We use this system to simulate compartment boundary maintenance in the Drosophila wing imaginal disc. We show that a boundary of minimum length between two growing polyclones of cells could depend on sorting between cells in the different polyclones. We also investigate the response of the model to differential cell division rates within polyclones. This is the first demonstration that cell sorting can generate a smooth boundary in a dividing cell mass. We suggest that biological analogs of our computer sorting rules are responsible for the similar straight polyclone borders seen in the real wing disc. A possible strategy for showing the existence of these analogs is also given.  相似文献   

19.
While the membrane potential of cells has been shown to be patterned in some tissues, specific roles for membrane potential in regulating signalling pathways that function during development are still being established. In the Drosophila wing imaginal disc, Hedgehog (Hh) from posterior cells activates a signalling pathway in anterior cells near the boundary which is necessary for boundary maintenance. Here, we show that membrane potential is patterned in the wing disc. Anterior cells near the boundary, where Hh signalling is most active, are more depolarized than posterior cells across the boundary. Elevated expression of the ENaC channel Ripped Pocket (Rpk), observed in these anterior cells, requires Hh. Antagonizing Rpk reduces depolarization and Hh signal transduction. Using genetic and optogenetic manipulations, in both the wing disc and the salivary gland, we show that membrane depolarization promotes membrane localization of Smoothened and augments Hh signalling, independently of Patched. Thus, membrane depolarization and Hh‐dependent signalling mutually reinforce each other in cells immediately anterior to the compartment boundary.  相似文献   

20.
To determine the roles of Drosophila transglutaminase-A (dTG-A), we examined a phenotype induced through ectopic expression of dTG-A. Overexpression of dTG-A in the wing imaginal disc induced an extra wing crossvein phenotype. This phenotype was suppressed by crossing with epidermal growth factor receptor (Egfr) signaling pathway mutant flies. These results indicate that this phenotype, induced by dTG-A, is related to enhancement of the Egfr signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号