首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
 A bacterial artificial chromosome (BAC) contig was constructed across the proximal part of the H2-M region from the major histocompatibility complex (Mhc) of mouse strain 129 (H2 bc ). The contig is composed of 28 clones that span approximately 1 megabasepair (Mb), from H2-T1 to Mog, and contains three H2-T genes and 18 H2-M genes. We report the fine mapping of the H2-M class I gene cluster, which includes the previously reported M4-M6, the M1 family, the M10 family, and four additional class I genes. All but two of the H2-M class I genes are conserved among haplotypes H2 k , H2 b , and H2 bc , and only two genes are found in polymorphic HindIII fragments. Six evolutionarily conserved non-class I genes were mapped to a 180 kilobase interval in the distal part of the class I region in mouse, and their order Znf173-Rfb30-Tctex5-Tctex6-Tctex4-Mog was found conserved between human and mouse. In this Znf173-Mog interval, three mouse class I genes, M6, M4, and M5, which are conserved among haplotypes, occupy the same map position as the human HLA-A class I cluster, which varies among haplotypes and is diverged in sequence from the mouse genes. These results further support the view that class I gene diverge and evolve independently between species. Received: 27 April 1998 / Revised: 4 June 1998  相似文献   

5.
The most telomeric class I region of the MHC in rat and mouse is the M region, which contains about 20 class I genes or gene fragments. The central part carries three class I genes—M4, M5, and M6—which are orthologous between the two species. M4 and M6 are pseudogenes in the mouse but transcribed, intact genes in the rat. To analyze the pseudogene status for the mouse genes in more detail, we have sequenced the respective exons in multiple representative haplotypes. The stop codons are conserved in all mouse strains analyzed, and, consistent with the pseudogene status, all strains show additional insertions and deletions, taking the genes further away from functionality. Thus, M4 and M6 indeed have a split status. They are silent in the mouse but intact in the closely related rodent, the rat.GenBank accession numbers: AF057065 to AF057072 (exon 3 of H2-M4 of reported mouse strains), AF057976 to AF057985 (exon 3 of RT1.M4 of reported rat strains), AF058923 and AF058924 (exon 2 of RT1.M4 of strains PVG and BN), AY286080 to AY286092 (exon 4 of H2-M6 of reported mouse stains), and AY303772 (full-length genomic sequence of RT1.M6-1l)  相似文献   

6.
7.
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~?20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl? contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl?. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.  相似文献   

8.
Dicer proteins belong to the RNase III family of proteins, which are key components in small RNA biogenesis. In Solanum lycopersicum, seven Dicer-like (DCL) genes have been identified and have been named SlDCL. In this study, we cloned the full-length sequence of the SlDCL genes including untranslated regions using RNA ligase-mediated rapid amplification of cDNA ends. Our analysis indicates that 7 SlDCLs were located on 5 tomato chromosomes (6, 7, 8, 10, and 11). The gene structure of the SlDCLs covered long genomic regions and contained more than 20 exons. Phylogenetic analysis divided the seven SlDCL members into four subgroups. In general, all seven SlDCLs were expressed in all organs but more in flowers and fruits than in the other parts. Moreover, the expressions of some genes changed slightly after treatment with ethylene or 1-methylcyclopropene suggesting their likely roles in plant responses to ethylene. Our findings provide essential information on SlDCL genes in tomato and will aid in the functional classification of DCL families in plants.  相似文献   

9.
RIG-I-like receptors are the key cytosolic sensors for RNA viruses and induce the production of type I interferons (IFN) and pro-inflammatory cytokines through a sole adaptor IFN-β promoter stimulator-1 (IPS-1) (also known as Cardif, MAVS and VISA) in antiviral innate immunity. These sensors also have a pivotal role in anticancer activity through induction of apoptosis. However, the mechanism for their anticancer activity is poorly understood. Here, we show that anticancer vaccine adjuvant, PolyIC (primarily sensed by MDA5) and the oncolytic virus, Newcastle disease virus (NDV) (sensed by RIG-I), induce anticancer activity. The ectopic expression of IPS-1 into type I IFN-responsive and non-responsive cancer cells induces anticancer activity. PolyIC transfection and NDV infection upregulate pro-apoptotic gene TRAIL and downregulate the anti-apoptotic genes BCL2, BIRC3 and PRKCE. Furthermore, stable knockdown of IPS-1, IRF3 or IRF7 in IFN-non-responsive cancer cells show reduced anticancer activity by suppressing apoptosis via TRAIL and anti-apoptotic genes. Collectively, our study shows that IPS-1 induces anticancer activity through upregulation of pro-apoptotic gene TRAIL and downregulation of the anti-apoptotic genes BCL2, BIRC3 and PRKCE via IRF3 and IRF7 in type I IFN-dependent and -independent manners.The primary protection of the host from various pathogens is ensured by the innate immune system, which consists of families of sensors such as the Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors. These sensors recognize the diverse range of pathogens in various cellular compartments and lead to the activation of innate immunity, including the production of various cytokines that create an anti-pathogenic environment to limit the pathogen. RLRs are cytosolic sensors that recognize the viral RNA and recruit an adaptor, Interferon (IFN)-β promoter stimulator-1 (IPS-1), also known as CARDIF, MAVS or VISA. IPS-1, a protein that contains a caspase activation and -recruitment domain (CARD), is localized to the mitochondria for its antiviral function.1, 2, 3, 4 Mice lacking IPS-1 show severely impaired antiviral innate immunity.5 The RLRs/IPS-1 signaling axis activates a cascade of signals that predominantly induces the production of the type I IFN and pro-inflammatory cytokines through IRFs and NF-κB, respectively, to establish an antiviral state.In addition to the pivotal role that host immunity has against numerous pathogen challenges, it is crucial in immune surveillance against altered-self cells. Immune mediators such as cytokines, chemokines and type I IFN initiate a complex network of signals to induce an anti-tumor state by triggering various biochemical processes such as cell cycle arrest and apoptosis. Additionally, these immune mediators facilitate cytotoxicity to the tumor cells through the recruitment of immunocompetent cells. The cytotoxic activity is mediated through the upregulation of pro-apoptotic genes and the downregulation of anti-apoptotic genes. These changes are critical for cancer cell death.6 Various innate and adaptive cytokines are used for treatment of several types of cancer.7, 8 The type I IFN are essential for antiviral immunity and induce pleiotropic effects such as the inhibition of malignant growth and apoptosis of altered-self cells.In addition, pathogen-associated molecular patterns such as polyinosinic:polycytidylic acid (polyIC), a synthetic analog of double-stranded RNA and viruses known as oncolytic viruses such as Vesicular stomatitis virus, Newcastle disease virus (NDV) and Sendai virus induce anticancer activity.9 However, the molecular mechanisms for these agents are poorly understood.Here, we showed that treatment of cancer cells with polyIC transfection or NDV infection initiates RIG-I- and MDA5-dependent anticancer activity through recruitment of an adaptor, IPS-1. Using IFN α/β receptor1 (IFNAR1)-sufficient and IFNAR1-deficient cancer cells, we showed that these anticancer activities require the RLR signaling pathway. However, type I IFN are dispensable for the anticancer activity. The RLR pathway induces anticancer activity through the selective induction of cell death or apoptosis via upregulation of the pro-apoptotic gene TRAIL and downregulation of the anti-apoptotic genes BCL2, BIRC3 and PRKCE. These changes lead to post-translational activation of caspases −3 and −9 and PARP-1 in cancer cells. Furthermore, our study reveals that IFN regulatory factors (IRF)3 and IRF7 are indispensable for the RLR-mediated anticancer activity.  相似文献   

10.
Brassinolide (BR) is crucial for regulating plant architecture. Apple dwarfing rootstocks are used to control apple tree size. However, information regarding the effects of BR on apple trees is limited. In addition, the molecular mechanism underlying the dwarfing of apple rootstocks is poorly understood. To elucidate the role of BR signal transduction genes in controlling apple tree architecture, five BR receptor kinase 1 (BRI1), nine BR-signaling kinase 1 (BSK1), two BRI1 KINASE INHIBITOR 1 (BKI1), and seven BR-insensitive 2 (BIN2) genes were analyzed. Bioinformatic analyses revealed that gene duplication events likely contributed to the expansion and evolution of the identified genes. Nine homologs between apple and Arabidopsis thaliana were also identified, and their expression patterns in different tissues were characterized. Exogenous BR treatments increased the primary shoot length and altered the expression of BR signal transduction genes (MdBRI1-5, MdBSK3-8, MdBKI12, MdBIN14, and MdBIN6/7). The scion of Fuji/Malling 9 (M.9) trees exhibited inhibited growth compared with that of Fuji/Fuji trees. The Fuji/M.9 trees had lower levels of the positive regulators of BR signaling (MdBRI1-5,MdBSK1, MdBSK4/7, and MdBSK6) and higher levels of the negative regulators (MdBIN5-7) compared with the Fuji/Fuji trees. Thus, the above-mentioned genes may help to regulate apple tree size in response to BR. In addition, MdBRI15, MdBSK1, MdBSK4/7, MdBSK6, and MdBIN57 have important roles in different grafting combinations. Our results may provide the basis for future analyses of BR signal transduction genes regarding their potential involvement in the regulation of plant architecture.  相似文献   

11.
About twenty genes participating in checkpoint control are known in yeast Saccharomyces cerevisiae. The involvement of SRM genes in the cell cycle arrest under the action of DNA damaging agents was studied in this work. These genes were earlier defined as genes affecting genetic stability and radiosensitivity. It was shown that mutations srm5/cdc28-srm, srm8/net1-srm, and srm12/hfi1-srm fail the cell cycle arrest in the presence of DNA damage and influence the checkpoint arrest in G0/S (srm5, srm8), G1/S (srm5, srm8, srm12), S (srm5, srm12), and G2/M (srm5). It seems likely that genes SRM5/CDC28, SRM12/HFI1/ADA1, and SRM8/NET1 are involved in a cell response to DNA damage, and in checkpoint regulation in particular.  相似文献   

12.
The aerial parts of Aruncus dioicus var. kamtschaticus afforded five new monoterpenoids (1-5): 4-(erythro-6,7-dihydroxy-9-methylpent-8-enyl)furan-2(5H)-one (1, aruncin A), 2-(8-ethoxy-8-methylpropylidene)-5-hydroxy-3,6-dihydro-2H-pyran-4-carboxylic acid (2, aruncin B), 4-(hydroxymethyl)-6-(8-methylprop-7-enyl)-5,6-dihydro-2H-pyran-2-one-11-O-β-d-glucopyranoside (3, aruncide A), (3S,4S,5R,10R)-3-(10-ethoxy-11-hydroxyethyl)-4-(5-hydroxy-7-methylbut-6-enyl)oxetan-2-one-11-O-β-d-glucopyranoside (4, aruncide B), and (3S,4S,5R,7R)-5-(9-methylprop-8-enyl)-1,6-dioxabicyclo[3,2,0]heptan-2-one-7-(hydroxymethyl)-12-O-β-d-glucopyranoside (5, aruncide C). Compound 2 showed potent cytotoxicity against Jurkat T cells with an IC50 value of 17.15 μg/mL. In addition, compounds 7 and 10 exhibited moderate antioxidant activity with IC50 values of 46.3 and 11.7 μM, respectively.  相似文献   

13.

Main conclusion

Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD. Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.  相似文献   

14.
15.
The barley genes Rpg5, RGA1 and Adf3, which provide a strong resistance to many pathotypes of stem rust, were cloned a few years ago, but it was still unclear whether their homologues were represented in wheat and in related species. The paper describes the results of a bioinformatic research to determine the homologues of Rpg5, RGA1 and Adf3 in the genomes of Triticum aestivum and several wild grasses, which breeders usually use as sources of stem rust resistance, and which are available in the genome databases. It was found that the Th. elongatum sequence Q9FEC6 and T. aestivum sequence Q43655 were the highly identical homologues of the Adf3 sequence. T. urartu M8A999 sequence and T. aestivum W5FCU1 sequence were found to be the closest homologues of Rpg5 complete protein sequence, but the identity of their kinase domains was not as clear as that of the other domains. The separate Rpg5 kinase part analysis did not provide the strong evidences that its orthologs were present in our corn species. T. urartu M7ZZX9 sequence and T. aestivum W5FFP0 and W5FI33 sequences were shown to be the homologues of RGA1. The analysis of the predicted active sites allowed finding out the difference between sequences of Rpg5, RGA1, Adf3 protein and their homologues.  相似文献   

16.
Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T represent two marine genera in the globally significant Roseobacter clade of the Alphaproteobacteria. Here, we present the genome sequences of these organisms, isolated from the Sargasso Sea using dilution-to-extinction culturing, which offer insight into the genetic basis for the metabolic and ecological diversity of this important group.Organisms from the Roseobacter clade of the Alphaproteobacteria are numerically significant in the world''s oceans and have been found in a wide range of habitats (1, 3). Using previously described high-throughput dilution-to-extinction culturing (6, 13), the marine Roseobacter strains Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T were isolated in low-nutrient heterotrophic medium (LNHM) (4) from surface water collected at the Bermuda Atlantic Time-Series Study (BATS) site in the western Sargasso Sea (5, 9). As the type strains for two genera of this globally prolific Roseobacter group, P. bermudensis and M. alkaliphilus were selected for shotgun genome sequencing at the J. Craig Venter Institute through the Moore Foundation Microbial Genome Sequencing Project (http://www.moore.org/microgenome). Draft genomes of P. bermudensis and M. alkaliphilus, with 103 and 46 contigs, respectively, were annotated and analyzed through the Joint Genome Institute IMG/M website (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi) (10).The draft genomes of P. bermudensis and M. alkaliphilus comprise 5,425,920 and 4,529,231 bases, 5,522 and 4,764 predicted open reading frames (ORFs), and 66.44% and 64.13% G+C content, respectively. The P. bermudensis genome is predicted to contain 56 tRNA genes, five 5S rRNA genes, four 16S rRNA genes, and five 23S rRNA genes, and that of M. alkaliphilus 49 tRNA genes and one each of the 5S, 16S, and 23S rRNA genes. Both genomes have putative genes for complete glycolysis and Entner-Doudoroff pathways, a complete tricarboxylic acid cycle, and predicted metabolic pathways for the oxidation of C1 compounds. Both have predicted genes for the synthesis of most essential amino acids and some vitamins and cofactors. Each has putative genes for the utilization of fructose, sucrose, and mannose, confirmed in physiological testing of P. bermudensis (5) but not for M. alkaliphilus (9). P. bermudensis contains a predicted complete RuBisCO complex, unique to the sequenced Roseobacter species (12, 15), a complete assimilatory nitrate reduction pathway, and several type VI secretion genes. M. alkaliphilus is predicted to have complete nitrate reduction pathways to both N2 and ammonia and most type IV secretion genes. Both are predicted to have complete sec pathways and large numbers of ABC transporters (362 in P. bermudensis and 224 in M. alkaliphilus), similar to other Roseobacter strains (15).M. alkaliphilus was named because of its alkaline growth optimum at pH 10. Na+/H+ antiporters have been shown to be involved in conferring alkaliphilic phenotypes for a variety of organisms by increasing internal cellular H+ concentrations in alkaline conditions where Na+ is present (2, 7, 8, 14, 16, 17). As expected, the genome of M. alkaliphilus contains two putative Na+/H+ antiporters, one homologous to nhaP, important for alkaliphily in several strains (2, 16, 17), and another located adjacent to predicted ABC transporter genes for capsular polysaccharide export.  相似文献   

17.
18.
Immunoproteasomes are primarily induced upon infection and formed by replacing constitutive beta subunits with inducible beta subunits which possess specific cleavage properties that aid in the release of peptides necessary for MHC class I antigen presentation. In this study, we report the molecular characterization and expression analysis of the inducible immunosubunits PSMB8, PSMB9, PSMB9-L, and PSMB10 from rock bream, Oplegnathus fasciatus. The three subunits shared common active site residues and were placed in close proximity to fish homologues in the reconstructed phylogenetic tree, in which the mammalian homologues formed separate clades, indicating a common ancestral origin. The rock bream immunosubunits possessed higher identity and similarity with the fish homologues. RbPSMB8, RbPSMB9, RbPSMB9-L, and RbPSMB10 were multi-exonic genes with 6, 6, 7 and 8 exons, respectively. These four genes were constitutively expressed in all the examined tissues. Immunostimulants such as lipopolysaccharide and poly I:C induced RbPSMB8, RbPSMB9, RbPSMB9-L, and RbPSMB10 in liver and head kidney, suggesting their possible involvement in immune defense in rock bream.  相似文献   

19.
The T7 antirestriction protein Ocr, encoded by 0.3 (ocr), specifically inhibits ATP-dependent type I restriction-modification systems. T7 0.3 (ocr) was cloned in pUC18. Ocr inhibited both restriction and modification activities of the type I restriction-modification system (EcoKI) in Escherichia coli K12. The Ocr F53D A57E mutant was obtained and proved to inhibit only restriction activity of EcoKI. The 0.3 (ocr) and Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P ltetO-1 promoter, strongly controlled by the TetR repressor. The bioluminescence intensity and luciferase content varied up to 5000-fold in E. coli K12 MG1655Z1 tetR+ (pZE21-luxCDABE) cells, depending on the environmental concentration of the inductor anhydrotetracycline. The antirestriction activity of Ocr and Ocr F53D A57E was studied as a function of their concentration in the cell. The dissociation constant K d, characterizing the binding with EcoKI, differed 1000-fold between Ocr and Ocr F53D A57E (10?10 M versus 10?7 M).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号