首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism.  相似文献   

2.
The interaction with human phagocytes is a hallmark of symptomatic Neisseria gonorrhoeae infections. Gonococcal outer membrane proteins of the Opa family induce the opsonin-independent uptake of the bacteria that relies on CEACAM receptors and an active signaling machinery of the phagocyte. Here, we show that CEACAM receptor-mediated phagocytosis of Opa(52)-expressing N. gonorrhoeae into human cells results in a rapid activation of the acid sphingomyelinase. Inhibition of this enzyme by imipramine or SR33557 abolishes opsonin-independent internalization without affecting bacterial adherence. Reconstitution of ceramide, the product of acid sphingomyelinase activity, in imipramine- or SR33557-treated cells restores internalization of the bacteria. Furthermore, we demonstrate that CEACAM receptor-initiated stimulation of other signalling molecules, in particular Src-like tyrosine kinases and Jun N-terminal kinases, requires acid sphingomyelinase. These studies provide evidence for a crucial role of the acid sphingomyelinase for CEACAM receptor-initiated signalling events and internalization of Opa(52)-expressing N. gonorrhoeae into human neutrophils.  相似文献   

3.
C R Hauck  T F Meyer  F Lang    E Gulbins 《The EMBO journal》1998,17(2):443-454
The interaction of Neisseria gonorrhoeae with human phagocytes is a hallmark of gonococcal infections. Recently, CD66 molecules have been characterized as receptors for Opa52-expressing gonococci on human neutrophils. Here we show that Opa52-expressing gonococci or Escherichia coli or F(ab) fragments directed against CD66, respectively, activate a signalling cascade from CD66 via Src-like protein tyrosine kinases, Rac1 and PAK to Jun-N-terminal kinase. The induced signal is distinct from Fcgamma-receptor-mediated signalling and is specific for Opa52, since piliated Opa- gonococci, commensal Neisseria cinerea or E.coli do not stimulate this signalling pathway. Inhibition of Src-like kinases or Rac1 prevents the uptake of Opa52 bacteria, demonstrating the crucial role of this signalling cascade for the opsonin-independent, Opa52/CD66-mediated phagocytosis of pathogenic Neisseria.  相似文献   

4.
During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity‐associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa? and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine‐treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non‐oxidative components, particularly neutrophil proteases and the bactericidal/permeability‐increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa? Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils’ full antimicrobial arsenal.  相似文献   

5.
Neisseria gonorrhoeae (gonococci, GC) are phagocytosed by neutrophils through the interaction between opacity proteins (Opa) and the CEA (CD66) family of antigens. In order to study this interaction, we used the human myeloid leukemia HL60 cell line, which differentiates into granulocyte-like cells upon treatment with dimethylsulfoxide (DMSO) or retinoic acid (RA). We found that RA-, but not DMSO- or untreated-HL60 cells, can phagocytose OpaI-expressing gonococci as well as Escherichia coli. The interaction of OpaI E. coli with RA-treated HL60 cells was inhibited by antibodies against CEACAM1. Phagocytosis of OpaI E. coli was found to be a result of the expression of CEACAM1 in RA-treated HL60 cells. Our results indicate that the level of expression of CEACAM1 in HL60 cells can be regulated by treatment with RA in a differentiation-dependent manner, and that this is important for phagocytosis of OpaI-expressing gonococci or E. coli.  相似文献   

6.
Sepsis, a leading cause of death worldwide, involves proinflammatory responses and inefficient bacterial clearance. Phagocytic cells play a crucial part in the prevention of sepsis by clearing bacteria through host innate receptors. Here we show that the FcRgamma adaptor, an immunoreceptor tyrosine-based activation motif (ITAM)-bearing signal transduction subunit of the Fc receptor family, has a deleterious effect on sepsis. FcRgamma(-/-) mice show increased survival during peritonitis, owing to markedly increased E. coli phagocytosis and killing and to lower production of the proinflammatory cytokine tumor necrosis factor (TNF)-alpha. The FcRgamma-associated receptor that inhibits E. coli phagocytosis is FcgammaRIII (also called CD16), and its absence protects mice from sepsis. FcgammaRIII binds E. coli, and this interaction induces FcRgamma phosphorylation, recruitment of the tyrosine phosphatase SHP-1 and phosphatidylinositide-3 kinase (PI3K) dephosphorylation. Decreased PI3K activity inhibits E. coli phagocytosis and increases TNF-alpha production through Toll-like receptor 4. We identified the phagocytic receptor negatively regulated by FcRgamma on macrophages as the class A scavenger receptor MARCO. E. coli-FcgammaRIII interaction induces the recruitment of SHP-1 to MARCO, thereby inhibiting E. coli phagocytosis. Thus, by binding FcgammaRIII, E. coli triggers an inhibitory FcRgamma pathway that both impairs MARCO-mediated bacterial clearance and activates TNF-alpha secretion.  相似文献   

7.
Colonization of urogenital tissues by the human pathogen Neisseria gonorrhoeae is characteristically associated with purulent exudates of polymorphonuclear phagocytes (PMNs) containing apparently viable bacteria. Distinct variant forms of the phase-variable opacity-associated (Opa) outer membrane proteins mediate the non-opsonized binding and internalization of N. gonorrhoeae by human PMNs. Using overlay assays and an affinity isolation technique, we demonstrate the direct interaction between Opa52-expressing gonococci and members of the human carcinoembryonic antigen (CEA) family which express the CD66 epitope. Gonococci and recombinant Escherichia coli strains synthesizing Opa52 showed specific binding and internalization by transfected HeLa cell lines expressing the CD66 family members BGP (CD66a), NCA (CD66c), CGM1 (CD66d) and CEA (CD66e), but not that expressing CGM6 (CD66b). Bacterial strains expressing either no opacity protein or the epithelial cell invasion-associated Opa50 do not bind these CEA family members. Consistent with their different receptor specificities, Opa52-mediated interactions could be inhibited by polyclonal anti-CEA sera, while Opa50 binding was instead inhibited by heparin. Using confocal laser scanning microscopy, we observed a marked recruitment of CD66 antigen by Opa52-expressing gonococci on both the transfected cell lines and infected PMNs. These data indicate that members of the CEA family constitute the cellular receptors for the interaction with, and internalization of, N. gonorrhoeae.  相似文献   

8.
9.
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen–related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.  相似文献   

10.
Although AMPK plays well-established roles in the modulation of energy balance, recent studies have shown that AMPK activation has potent anti-inflammatory effects. In the present experiments, we examined the role of AMPK in phagocytosis. We found that ingestion of Escherichia coli or apoptotic cells by macrophages increased AMPK activity. AMPK activation increased the ability of neutrophils or macrophages to ingest bacteria (by 46 ± 7.8 or 85 ± 26%, respectively, compared to control, P<0.05) and the ability of macrophages to ingest apoptotic cells (by 21 ± 1.4%, P<0.05 compared to control). AMPK activation resulted in cytoskeletal reorganization, including enhanced formation of actin and microtubule networks. Activation of PAK1/2 and WAVE2, which are downstream effectors of Rac1, accompanied AMPK activation. AMPK activation also induced phosphorylation of CLIP-170, a protein that participates in microtubule synthesis. The increase in phagocytosis was reversible by the specific AMPK inhibitor compound C, siRNA to AMPKα1, Rac1 inhibitors, or agents that disrupt actin or microtubule networks. In vivo, AMPK activation resulted in enhanced phagocytosis of bacteria in the lungs by 75 ± 5% vs. control (P<0.05). These results demonstrate a novel function for AMPK in enhancing the phagocytic activity of neutrophils and macrophages.  相似文献   

11.
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa–CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.  相似文献   

12.
The human restricted pathogen Moraxella catarrhalis is an important causal agent for exacerbations in chronic obstructive lung disease in adults. In such patients, increased numbers of granulocytes are present in the airways, which correlate with bacteria‐induced exacerbations and severity of the disease. Our study investigated whether the interaction of M. catarrhalis with the human granulocyte‐specific carcinoembryonic antigen‐related cell adhesion molecule (CEACAM)‐3 is linked to NF‐κB activation, resulting in chemokine production. Granulocytes from healthy donors and NB4 cells were infected with M. catarrhalis in the presence of different inhibitors, blocking antibodies and siRNA. The supernatants were analysed by enzyme‐linked immunosorbent assay for chemokines. NF‐κB activation was determined using a luciferase reporter gene assay and chromatin‐immunoprecipitation. We found evidence that the specific engagement of CEACAM3 by M. catarrhalis ubiquitous surface protein A1 (UspA1) results in the activation of pro‐inflammatory events, such as degranulation of neutrophils, ROS production and chemokine secretion. The interaction of UspA1 with CEACAM3 induced the activation of the NF‐κB pathway via Syk and the CARD9 pathway and was dependent on the phosphorylation of the CEACAM3 ITAM‐like motif. These findings suggest that the CEACAM3 signalling in neutrophils is able to specifically modulate airway inflammation caused by infection with M. catarrhalis.  相似文献   

13.
Opa1 modulates mitochondrial fusion, cristae structure and apoptosis. The relationships between these functions and autosomal dominant optic atrophy, caused by mutations in Opa1, are poorly defined. We show that Bnip3 interacts with Opa1, leading to mitochondrial fragmentation and apoptosis. Fission is due to inhibition of Opa1‐mediated fusion and is counteracted by Opa1 in an Mfn1‐dependent manner. Bnip3–Opa1 interaction is necessary to trigger Opa1 complex disruption in a Bax‐ and/or Bak‐dependent manner, ultimately leading to apoptosis. Our results uncover a direct link between Opa1 on the inner mitochondrial membrane and the apoptotic machinery on the outer membrane that modulates fusion and cristae structure by separate mechanisms. These findings might help to unravel optic atrophy aetiology as retinal ganglion cells are particularly prone to hypoxia, an inductor of Bnip3 expression.  相似文献   

14.
The role of the activation of phosphoinositide turnover and of the increase in cytosolic free calcium, [Ca2+]i, in the phagocytosis and associated activation of the respiratory burst was investigated. We report the results obtained on the phagocytosis of yeast cells mediated by Con A in normal and in Ca2+-depleted human neutrophils. In normal neutrophils the phagocytosis was associated with a respiratory burst, a stimulation in the formation of [3H] inositol phosphates and [32P]phosphatidic acid, the release of [3H]arachidonic acid, and a rise in [Ca2+]i. Ca2+-depleted neutrophils are able to perform the phagocytosis of yeast cells mediated by Con A and to activate the respiratory burst without stimulation of [3H]inositol phosphates and [32P]phosphatidic acid formation, [3H]arachidonic acid release, and rise in [Ca2+]i. In both normal and Ca2+-depleted neutrophils the phagocytosis and the associated respiratory burst, 1) were inhibited by cytochalasin B; 2) were insensitive to H-7, an inhibitor of protein kinase C; and 3) did not involve GTP-binding protein sensitive to pertussis toxin. These findings indicate that the activation of phosphoinositide turnover, the liberation of arachidonic acid, the rise in [Ca2+]i, and the activity of protein kinase C are not necessarily required for ingestion of Con A-opsonized particles and for associated activation of the NADPH oxidase, the enzyme responsible for the respiratory burst. The molecular mechanisms of these phosphoinositide and Ca2+-independent responses are discussed.  相似文献   

15.
The human-restricted pathogens Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and Moraxella catarrhalis colonize host tissues via carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). One such receptor, CEACAM3, acts in a host-protective manner by orchestrating the capture and engulfment of invasive bacteria by human neutrophils. Herein, we show that bacterial binding to CEACAM3 causes recruitment of the cytoplasmic tyrosine kinase Syk, resulting in the phosphorylation of both CEACAM3 and Syk. This interaction is specific for the immunoreceptor tyrosine-based activation motif (ITAM) in the CEACAM3 cytoplasmic domain. While dispensable for the phagocytic uptake of single bacteria by CEACAM3, Syk is necessary for internalization when cargo size increases or when the density of CEACAM-binding ligand on the cargo surface is below a critical threshold. Moreover, Syk engagement is required for an effective bacterial killing response, including the neutrophil oxidative burst and degranulation functions in response to N. gonorrhoeae. These data reveal CEACAM3 as a specific innate immune receptor that mediates the opsonin-independent clearance of CEACAM-binding bacteria via Syk, a molecular trigger for functional immunoreceptor responses of both the adaptive (TCR, BCR, FcR) and innate (Dectin-1, CEACAM3) immune systems.  相似文献   

16.
Symptomatic infection with Neisseria gonorrhoeae (Gc) results in a potent polymorphonuclear leukocyte (PMN)-driven inflammatory response, but the mechanisms by which Gc withstands PMN attack are poorly defined. Here we report that Gc can suppress the PMN oxidative burst, a central component of the PMN antimicrobial arsenal. Primary human PMNs remained viable after exposure to liquid-grown, exponential-phase, opacity-associated protein (Opa)-negative Gc of strains FA1090 and MS11 but did not generate reactive oxygen species (ROS), even after bacterial opsonization. Liquid-grown FA1090 Gc expressing OpaB, an Opa protein previously correlated with PMN ROS production, elicited a minor PMN oxidative burst. PMN ROS production in response to Opa(-) and OpaB+ Gc was markedly enhanced if bacteria were agar-grown or if liquid-grown bacteria were heat-killed. Liquid-grown Opa(-) Gc inhibited the PMN oxidative burst elicited by isogenic dead bacteria, formylated peptides or Staphylococcus aureus but did not inhibit PMN ROS production by OpaB+ Gc or phorbol esters. Suppression of the oxidative burst required Gc-PMN contact and bacterial protein synthesis but not phagocytosis. These results suggest that viable Gc directly inhibits PMN signalling pathways required for induction of the oxidative burst, which may contribute to gonococcal pathogenesis during inflammatory stages of gonorrhoeal disease.  相似文献   

17.
Human neutrophil response to recombinant neisserial Opa proteins   总被引:13,自引:0,他引:13  
Interactions of human neutrophils with recombinant Escherichia coli expressing gonococcal outer membrane Opa proteins were examined using chemiluminescent and biological assays. Seven opa loci from Neisseria gonorrhoeae MS11 4.8 were expressed as beta-lactamase-Opa fusion proteins that contained all but the mature N-terminal amino acid of the full-length Opa protein fused to three N-terminal amino acids derived from the mature beta-lactamase. The Opa fusion proteins were exported and assembled in the outer membrane of E. coli in a manner similar to that of Opa in N. gonorrhoeae, as evaluated by antibody binding and in situ proteolytic cleavage. All fusion proteins exhibited the characteristic heat-modifiable migration in SDS-polyacrylamide gel electrophoresis that typifies Opa proteins of neisseriae. Opa fusion proteins conferred on E. coli the ability to stimulate a chemiluminescent response from human neutrophils in the absence of antibody or complement. The nature of the response in terms of chemiluminescence, phagocytosis, and killing was in all cases analogous to that seen using N. gonorrhoeae expressing the equivalent Opa protein. Neither E. coli nor gonococci expressing OpaA elicited a response from neutrophils. Use of E. coli expressing Opa fusions should be useful in defining their biological activities and pathogenic roles.  相似文献   

18.
Modulation on the duration of intracellular Ca(2+) transients is essential for B-cell activation. We have previously shown that extracellular-signal-regulated kinase (ERK) can phosphorylate inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1) at serine 436 and regulate its calcium channel activity. Here we investigate the potential physiological interaction between ERK and IP(3)R1 using chicken DT40 B-cell line in which different mutants are expressed. The interaction between ERK and IP(3)R1 is confirmed by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) assays. This constitutive interaction is independent of either ERK kinase activation or IP(3)R1 phosphorylation status. Back phosphorylation analysis further shows that type 1 IP(3)R (IP(3)R1) is phosphorylated by ERK in anti-IgM-activated DT40 cells. Finally, our data show that the phosphorylation of Ser 436 in the IP(3)-binding domain of IP(3)R1 leads to less Ca(2+) release from endoplasmic reticulum (ER) microsomes and accelerates the declining of calcium increase in DT40 cells in response to anti-IgM stimulation.  相似文献   

19.
Opacity proteins (Opa) of Neisseria gonorrhoeae, a family of variant outer membrane proteins implicated in pathogenesis, are subject to phase variation. In strain MS11, 11 different opa gene alleles have been identified, the expression of which can be turned on and off independently. Using a reverse genetic approach, we demonstrate that a single Opa protein variant of strain MS11, Opa50, enables gonococci to invade epithelial cells. The remaining variant Opa proteins show no, or very little, specificity for epithelial cells but instead confer interaction with human polymorphonuclear neutrophils (PMNs). Thus, depending on the opa allele expressed, gonococci are capable of invading epithelial cells or of interacting with human leukocytes. The respective properties of Opa proteins are maintained independent of the gonococcal strain; thus, the specificity for epithelial cells or leukocytes is intrinsic to Opa proteins. Significant homology exists in the surface exposed variable regions of two invasion supporting Opa proteins from independent strains. Efficient epithelial cell invasion is favoured by high level Opa production, however, a 10-fold reduction still allows significant invasion by gonococci. In contrast, recombinant Escherichia coli expressing Opa proteins adhered or invaded poorly under similar experimental conditions, thus indicating that additional factors besides Opa are required in the Opa-mediated interaction with human cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号