首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polycation liposome (PCL), a recently developed gene transfer system, is simply prepared by a modification of liposomes with cetylated polyethylenimine (PEI), and shows remarkable transgene efficiency with low cytotoxicity. In the present study, we investigated the applicability of PCLs for in vivo gene transfer, since the PCL-mediated transgene efficiency was found to be maintained in the presence of serum. PCLs composed of dioleoylphosphatidylethanolamine (DOPE) with 5 mol% cetyl PEI (PEI average mr. wt. 1800), were superior for transfection to those of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (2:1 as molar ratio) with 5 mol% cetyl PEI in vitro, although the latter PCLs were more efficient for gene transfer in vivo. PCL-DNA complexes were injected into mice via a tail or the portal vein, with the DNA being a plasmid encoding green fluorescent protein (GFP) or luciferase; and the expression was monitored qualitatively or quantitatively, respectively. Tail vein injection resulted in high expression of both GFP and luciferase genes in lung, and portal vein injection resulted in high expression of both genes in the liver. Concerning the gene delivery efficiency, the PCL was found to be superior to PEI or cetyl PEI alone. The optimal conditions for in vivo transfection with PCLs were also examined.  相似文献   

2.
Possible mechanism of polycation liposome (PCL)-mediated gene transfer   总被引:2,自引:0,他引:2  
A novel gene transfer system utilizing polycation liposomes (PCLs), obtained by modifying liposomes with cetyl polyethylenimine (PEI), was previously developed (Gene Ther. 7 (2002) 1148). PCLs show notable transfection efficiency with low cytotoxicity. However, the mechanism of PCL-mediated gene transfer is still unclear. In this study, we examined the intracellular trafficking of PCL-DNA complexes by using HT1080 cells, fluorescent probe-labeled materials, and confocal laser scan microscopy. We found that the PCL-DNA complexes were taken up into cells by the endosomal pathway, since both cellular uptake of the complex and gene expression were blocked by wortmannin, an inhibitor of this pathway. We also observed that the plasmid DNA and cetyl PEI complex became detached from the PCL lipids and was preferentially transferred into the nucleus in the form of the complex, whereas the PCL lipids remained in the cytoplasmic area, possibly in the endosomes. In fact, nigericin, which dissipates the pH gradient across the endosomal membrane, inhibited the detachment of lipids from the PCL-DNA complex and subsequent gene expression. Taken together, our data indicate the following mechanism for gene transfer by PCLs: PCLs effectively transfer DNA to endosomes and release cetyl PEI-DNA complexes into the cytosol. Furthermore, cetyl PEI also contributes to gene entry into the nucleus.  相似文献   

3.
Efficient gene transfer to the airways by nonviral vectors is a function of different parameters, among which the size and the charge of the transfecting particles. The aim of this study was to determine the transfection efficiency of polyethylenimine (PEI)/albumin polyplexes in ex vivo and in vivo models of respiratory epithelium and to correlate it with biophysical characteristics of the particles. Complexes were obtained by adding different amounts of human serum albumin (HSA) to PEI polyplexes preformed in saline. The presence of HSA caused the formation of bigger and more negative polyplexes and increased PEI transfection efficiency in primary respiratory epithelial cells by 4-6-fold. For in vivo administration to the lung, PEI polyplexes were formed in water and optimized with respect to the N/ P ratio. PEI/pC-Luc complexes gave the highest luciferase expression at N/ P 15 when administered through the trachea. At this N/ P ratio, the size and the surface charge of albumin-containing polyplexes were not different as compared with plain PEI polyplexes. Formulation of PEI polyplexes in the presence of HSA or murine serum albumin (MSA) resulted in a 2-fold increase in luciferase expression. In mice treated with PEI or PEI/MSA polyplexes containing the nuclear beta-gal gene, X-gal staining revealed that transfected cells localized at the bronchiolar epithelium and that PEI/MSA transfected four times as many cells as PEI ( p < 0.05). Finally, double administration of PEI/MSA polyplexes resulted in a further enhancement of transfection of the lung. Our data show that serum albumin enhances PEI-mediated gene transfer to airway epithelial cells in vivo, likely facilitating the uptake of polyplexes, and indicate that this formulation would fulfill the requirement of repeated administration, as necessary in chronic lung diseases like cystic fibrosis.  相似文献   

4.
Abstract

Cationic liposomes are non-viral gene transfer vectors for in vitro and in vivo experiments. In the present studies, we investigated whether a disulfide linkage in a cationic lipid was reducible by cell lysate resulting in the release of plasmid DNA and enhanced gene transfection. We also investigated if the differences in transgene production were from differences in total amount of cellular associated plasmid DNA. We systematically compared the gene transfection of disulfide bond containing-cationic lipid, 1', 2'-dioleoyl-sn-glycero-3'-succinyl-2-hydroxyethyl disulfide ornithine conjugate (DOGSDSO), its non-disulfide-containing analog, 1', 2'-dioleyl-sn-glycero-3'-succinyl-1, 6-hexanediol ornithine conjugate (DOGSHDO), 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP). Two transgene reporter systems (i.e., luciferase and green fluorescent protein (GFP)) were used to address transgene transgene expression and transgene efficiency. Experiments with the luciferase expression plasmid resulted in transgene activity up to 11 times greater transgene production for the disulfide containing lipid in at least two different cell lines, COS 1 and CHO cells. When transgene expression was determined by GFP activity, DOGSDSO liposomes were four times greater than the non-disulfide lipid or positive control (DOTAP) liposomes. By quantifying nucleic acid uptake by flow cytometry it was also demonstrated that increase expression was not solely from an increase in cellular plasmid DNA accumulation. These results demonstrate that cationic lipids containing a disulfide linkage are a promising method for gene transfer.  相似文献   

5.
The goal of this study was to examine the efficacy of liver-targeted gene delivery by chitosan-DNA nanoparticles through retrograde intrabiliary infusion (RII). The transfection efficiency of chitosan-DNA nanoparticles, as compared with PEI-DNA nanoparticles or naked DNA, was evaluated in Wistar rats by infusion into the common bile duct, portal vein, or tail vein. Chitosan-DNA nanoparticles administrated through the portal vein or tail vein did not produce detectable luciferase expression. In contrast, rats that received chitosan-DNA nanoparticles showed more than 500 times higher luciferase expression in the liver 3 days after RII; and transgene expression levels decreased gradually over 14 days. Luciferase expression in the kidney, lung, spleen, and heart was negligible compared with that in the liver. RII of chitosan-DNA nanoparticles did not yield significant toxicity and damage to the liver and biliary tree as evidenced by liver function analysis and histopathological examination. Luciferase expression by RII of PEI-DNA nanoparticles was 17-fold lower than that of chitosan-DNA nanoparticles on day 3, but it increased slightly over time. These results suggest that RII is a promising routine to achieve liver-targeted gene delivery by non-viral nanoparticles; and both gene carrier characteristics and mode of administration significantly influence gene delivery efficiency.  相似文献   

6.
Nonviral vector-based gene transfection of primary human skeletal myoblasts   总被引:1,自引:0,他引:1  
Low-level transgene efficiency is one of the main obstacles in ex vivo nonviral vector-mediated gene transfer into primary human skeletal myoblasts (hSkMs). We optimized the cholesterol:N-[1-(2, 3-dioleoyloxy)propyl]-N, N, N-trimethylammonium methylsulfate liposome (CD liposome) and 22-kDa polyethylenimine (PEI22)- and 25-kDa polyethylenimine (PEI25)-mediated transfection of primary hSkMs for angiogenic gene delivery. We found that transfection efficiency and cell viability of three nonviral vectors were cell passage dependent: early cell passages of hSkMs had higher transfection efficiencies with poor cell viabilities, whereas later cell passages of hSkMs had lower transfection efficiencies with better cell viabilities. Trypsinization improved the transfection efficiency by 20% to 60% compared with adherent hSkMs. Optimum gene transfection efficiency was found with passage 6 trypsinized hSkMs: transfection efficiency with CD lipoplexes was 6.99 +/- 0.13%, PEI22 polyplexes was 18.58 +/- 1.57%, and PEI25 polyplexes was 13.32 +/- 0.88%. When pEGFP (a plasmid encoding the enhanced green fluorescent protein) was replaced with a vector containing human vascular endothelial growth factor 165 (phVEGF(165)), the optimized gene transfection conditions resulted in hVEGF(165) expression up to Day 18 with a peak level at Day 2 after transfection. This study demonstrated that therapeutic angiogenic gene transfer through CD or PEI is feasible and safe after optimization. It could be a potential strategy for treatment of ischemic disease for angiomyogenesis.  相似文献   

7.
8.
BACKGROUND: Chitosan has been shown to be a non-toxic and efficient vector for in vitro gene transfection and in vivo gene delivery through pulmonary and oral administrations. Recently, we have shown that chitosan/DNA nanoparticles could mediate high levels of gene expression following intrabiliary infusion 1. In this study, we have examined the possibility of using polyethylene glycol (PEG)-grafted chitosan/DNA complexes to deliver genes to the liver through bile duct and portal vein infusions. METHODS: PEG (Mw: 5 kDa) was grafted onto chitosan (Mw: 47 kDa, deacetylation degree: 94%) with grafting degrees of 3.6% and 9.6% (molar percentage of chitosan monosaccharide units grafted with PEG). The stability of chitosan-g-PEG/DNA complexes was studied by measuring the change in particle size and by agarose gel electrophoresis against bile or serum challenge. The influence of PEG grafting on gene transfection efficiency was evaluated in HepG2 cells using luciferase reporter gene. Chitosan and chitosan-g-PEG/DNA complexes were delivered to the liver through bile duct and portal vein infusions with a syringe pump. Gene expression in the liver and the distribution of gene expression in other organs were evaluated. The acute liver toxicity of chitosan and chitosan-g-PEG/DNA complexes was examined by measuring serum alanine aminotranferase (ALT) and aspartate aminotransferase (AST) activities as a function of time. RESULTS: Both chitosan and chitosan-g-PEG displayed comparable gene transfection efficiency in HepG2 cells. After challenge with serum and bile, chitosan-g-PEG/DNA complexes, especially those prepared with chitosan-g-PEG (GD = 9.6%), did not form large aggregates like chitosan/DNA complexes but remained stable for up to 30 min. In addition, chitosan-g-PEG prevented the degradation of DNA in the presence of serum and bile. On day 3 after bile duct infusion, chitosan-g-PEG (GD = 9.6%)/DNA complexes mediated three times higher gene expression in the liver than chitosan/DNA complexes and yielded background levels of gene expression in other organs. On day 1 following portal vein infusion, gene expression level induced by chitosan/DNA complexes was hardly detectable but chitosan-g-PEG (GD = 9.6%) mediated significant transgene expression. Interestingly, transgene expression by chitosan-g-PEG/DNA complexes in other organs after portal vein infusion increased with increasing grafting degree of PEG. The ALT and AST assays indicated that grafting of PEG to chitosan reduced the acute liver toxicity towards the complexes. CONCLUSION: This study demonstrated the potential of chitosan-g-PEG as a safe and more stable gene carrier to the liver.  相似文献   

9.
The human retinal pigment epithelium (RPE) is a potential target tissue for directed transfer of candidate genes to treat age-related macular degeneration (AMD). The RPE is uniquely suited to gene therapy protocols that use liposome-mediated DNA transfer because of its high intrinsic phagocytic function in vivo. In these studies, we examined the efficacy of human RPE cell uptake and expression of the green fluorescent protein (GFP) and neomycin resistance marker genes by polyplex-mediated gene transfer in vitro. The effects of varying DNA and polyplex concentration and ratios on GFP transgene expression were examined. A narrow range of experimental conditions were found to maximize transgene expression; most important were the DNA concentration and the DNA:polyplex ratio. The transfection efficiency for human RPE cells was reproducibly 20% in vitro by this method and reached a maximum level of expression after 48 h. There was a rapid decline in gene expression over 2 weeks following polyplex-mediated gene transfer, but stable integration does occur at low frequencies with and without selection.  相似文献   

10.
This report describes gene transfer in vitro as well as in vivo using cetylated low-molecular mass (600 Da) polyethylenimine (28% of amine groups substituted with cetyl moieties), termed CT-PEI. This compound is hydrophobic and has to be incorporated into liposomes in order to be suitable for gene transfer studies. Serum-induced plasmid DNA degradation assay demonstrated that CT-PEI-containing liposomal carriers could protect complexed DNA (probably via condensation). In vitro luciferase gene expression achieved using medium supplemented with 10% serum was comparable to that achieved in serum-reduced medium and was highest for CT-PEI/cholesterol liposomes, followed by CT-PEI/dioleoylphosphatidylcholine liposomes and PEI 600 Da (uncetylated) carrier. In vivo systemic transfer into mice was most efficient when liposome formulations contained CT-PEI and cholesterol. Higher luciferase expression was then observed in lungs than in liver. In conclusion: liposomes containing cetylated polyethylenimine and cholesterol are a suitable vehicle for investigating systemic plasmid DNA transfer into lungs.  相似文献   

11.
A novel non-viral gene delivery system comprised of a DNA/PEI/Alginate (DPA) polyplex was prepared and assessedin vitro andin vivo. Coating the positively charged DNA/PEI (DP) complex with a polyanion resulted in a high level ofin vitro reporter gene transfection in the presence of 50 vol% serum due to the minimized cytotoxicity of PEI and the reduced nonspecific interactions with serum components. Among the tested anionic polymers, which included sodium alginate, poly(methacrylic acid) and poly(acrylic acid), the sodium alginate showed the highest gene transfection efficiency. The DPA polyplex also showed a reduced level of erythrocyte aggregation in target cells when compared with the DP complex. According toin vivo studies in which reporter genes encoding green fluorescent protein (GFP) and luciferase were used, injection of the DPA polyplex into tumor cells in six week old female C57/BL6 mice resulted in a much higher level of GFP expression and approximately 7 fold higher luciferase expression than treatment with the DP complex. Taken together, these results demonstrated that the anionic alginate coating of the DP complex contributed to efficient gene deliveryin vitro andin vivo.  相似文献   

12.
In order to develop improved synthetic gene transfer vectors, we have synthesized bifunctional peptides composed of a DNA binding peptide (P2) and ligand peptides selected by the phage display technique on tracheal epithelial cells. We have evaluated the capacity of these peptides to enhance the gene transfer efficiency of the cationic lipid DOTAP to the mouse lung. To optimize the in vivo transfection efficiency, we first compared the efficiency of DOTAP to transfect the lung by either intravenous injection or aerosolization. We then tested DNA/Peptide/DOTAP complexes formed at different Peptide/DNA and DOTAP/DNA charge ratios. Under optimal conditions, precompaction of DNA by peptide P2 gave a higher expression in the mouse lung using the luciferase reporter gene than DOTAP/DNA complexes. A further increase of transfection efficiency was obtained with the bifunctional peptide P2-9. Experiments performed with the GFP reporter gene showed expression in the alveolar parenchyme.  相似文献   

13.
We constructed multimers of the TAT-(47-57) peptide. This polycationic peptide is known to be a protein and particle transduction domain and at the same time to comprise a nuclear localization function. Here we show that oligomers of the TAT-(47-57) peptide compact plasmid DNA to nanometric particles and stabilize DNA toward nuclease degradation. At optimized vector compositions, these peptides mediated gene delivery to cells in culture 6-8-fold more efficiently than poly-L-arginine or the mutant TAT(2)-M1. When DNA was precompacted with TAT peptides and polyethyleneimine (PEI), Superfect, or LipofectAMINE was added, transfection efficiency was enhanced up to 390-fold compared with the standard vectors. As early as after 4 h of transfection, reporter gene expression mediated by TAT-containing complexes was higher than the 24-h transfection level achieved with a standard PEI transfection. When cells were cell cycle-arrested by serum starvation or aphidicolin, TAT-mediated transfection was 3-fold more efficient than a standard PEI transfection in proliferating cells. In primary nasal epithelial cells and upon intratracheal instillation in vivo, TAT-containing complexes were superior to standard PEI vectors. These data together with confocal imaging of TAT-DNA complexes in cells support the hypothesis that the TAT nuclear localization sequence function is involved in enhancing gene transfer.  相似文献   

14.
Hyperbranched poly(ester amine)s (PEAs) were successfully synthesized by Michael addition reaction between tris[2-(acryloyloxy)ethyl]isocyanurate (TAEI) and low-molecular-weight polyethylenimine (LPEI, M(w) 0.8k, 1.2k, and 2.0k) and evaluated in vitro and in vivo as gene carriers. PEAs effectively condensed plasmid DNA with particle sizes below 200 nm and surface charges between 11.5 and 33.5 mV under tested doses [at the ratios 2-10:1 of polymer/pDNA(w/w)]. The PEAs showed significantly lower cytotoxicities when compared with PEI 25k in two different cell lines. The PEAs (C series) composed of PEI 2k showed higher transgene expression compared to PEAs of PEI 0.8k (A series) or 1.2k (B series). Highest gene transfection efficiency in CHO, C2C12 myoblast, and human skeletal muscle (HSK) cell lines was obtained with TAEI/PEI-2K (C12) at a ratio of 1:2. Both C12, C14(TAEI/PEI-2K at a ratio of 1:4) demonstrated 5-8-fold higher gene expression as compared with PEI 25k in mdx mice in vivo through intramuscular administration. No obvious muscle damage was observed with these new polymers. Higher transfection efficiency and lower toxicity indicate the potential of the biodegradable PEAs as safe and efficient transgene delivery vectors.  相似文献   

15.
The human retinal pigment epithelium (RPE) is a potential target tissue for directed transfer of candidate genes to treat age‐related macular degeneration (AMD). The RPE is uniquely suited to gene therapy protocols that use liposome‐mediated DNA transfer because of its high intrinsic phagocytic function in vivo. In these studies, we examined the efficacy of human RPE cell uptake and expression of the green fluorescent protein (GFP) and neomycin resistance marker genes by polyplex‐mediated gene transfer in vitro. The effects of varying DNA and polyplex concentration and ratios on GFP transgene expression were examined. A narrow range of experimental conditions were found to maximize transgene expression; most important were the DNA concentration and the DNA:polyplex ratio. The transfection efficiency for human RPE cells was reproducibly 20\% in vitro by this method and reached a maximum level of expression after 48 h. There was a rapid decline in gene expression over 2 weeks following polyplex‐mediated gene transfer, but stable integration does occur at low frequencies with and without selection. J. Cell. Biochem. 76:153–160, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
BACKGROUND: Our current understanding of how the unique tumour microenvironment influences the efficacy of gene delivery is limited. The current investigation systematically examines the efficiency of several non-viral gene transfer agents to transfect multicellular tumour spheroids (MCTS), an in vitro model that displays a faithful three-dimensional (3D) representation of solid tumour tissue. METHODS: Using a luciferase reporter assay, gene transfer to MCTS was optimised for 22 kDa linear and 25 kDa branched polyethyleneimine (PEI), the cationic lipids Lipofectamine(trade mark) and DCChol : DOPE, and the physical approach of tissue electroporation. Confocal microscopy was used to take optical tissue slices to identify the tissue localisation of green fluorescent protein (GFP) reporter gene expression and the distribution of fluorescently labelled complexes. A MCTS model of quiescent tumour regions was used to establish the influence of cellular proliferation status on gene transfer efficiency. RESULTS: Of the polyplexes tested, 22 kDa linear PEI provided optimal gene delivery, with gene expression peaking at 46 h. Despite being the optimal vector tested, PEI-mediated transfection was limited to cells at the MCTS periphery. Using fluorescent PEI, it was found that complexes could only penetrate the outer 3-5 proliferating cell layers of the MCTS, sparing the deeper quiescent cells. Gene delivery in an MCTS model comprised entirely of quiescent cells demonstrated that in addition to being inaccessible to the vector, quiescent tumour regions are inherently less susceptible to PEI-mediated transfection than proliferating regions. This 'resistance' to transfection observed in quiescent cells was overcome through the use of electroporation. Despite the improved efficacy of electroporation in quiescent tissue, the gene expression was still confined to the outer regions of MCTS. The results suggest that limited access to central regions of an MCTS remain a significant barrier to gene delivery. CONCLUSIONS: This data provides new insights into tumour-specific factors affecting non-viral gene transfer and highlights the difficulties in delivering genes to avascular tumour regions. The MCTS model is a useful system for the initial screening of future gene therapy strategies for solid tumours.  相似文献   

17.
Gene transfer to vein grafts has therapeutic potential to prevent late graft failure; however, certain issues, including efficacy and safety, have hindered the clinical application of this treatment modality. Here, we report the successful and efficient gene transfer of plasmid DNA via ex vivo electroporation into veins as well as into vein grafts. Two approaches were used: one involved transluminal in situ gene transfer using a T-shaped electrode (the "Lu" method), and the other was an adventitial ex vivo approach using an electroporation cuvette followed by vein grafting (the "Ad" method). The Lu method was carried out at 10 V, with optimal gene transfer efficiency in the in situ jugular veins of rabbits, and transgene expression was observed primarily in endothelial cells. However, when these veins were grafted into the arterial circulation, no luciferase activity was detected; this effect was probably due to the elimination of the gene-transferred cells as a result of endothelial denudation. In contrast, optimal and satisfactory gene transfer was obtained with the vein grafts subjected to the Ad method at 30 V, and transgene expression was seen primarily in adventitial fibroblasts. Gene transfer of endothelial nitric oxide synthase cDNA to the vein graft via the Ad method successfully limited the extent of intimal hyperplasia, even under hyperlipidemic conditions, at 4 wk after grafting. We thus propose that the Ad method via ex vivo electroporation may provide a novel, safe, and clinically available technique for nonviral gene transfer to sufficiently prevent late graft failure.  相似文献   

18.
聚乙烯亚胺(PEI)是一种具有良好生物安全性和生物相容性的非病毒载体,能高效转染肿瘤细胞。小环DNA是一种去除质粒细菌骨架,只含有目的基因表达框的环状DNA分子。与普通质粒相比,小环DNA具有表达效率高、持续时间长的优势。使用PEI包裹携带报告基因gfp和抑癌基因pten小环DNA载体,并利用各种技术手段分析了该传输系统的理化性质和生物学效应。凝胶阻滞实验、电镜实验及MTT实验分析结果表明利用PEI包裹小环DNA和质粒DNA体系性质无显著的差别,并且2种复合物对细胞毒性亦无明显差别;但是动态光散射实验结果显示由于PEI可以包裹更多数量的小环DNA,所以PEI包裹小环DNA形成的复合物粒径要略大于包裹质粒DNA形成的复合物粒径。荧光显微镜实验、real-time PCR分析和Western blotting分析结果表明,PEI包裹小环DNA形成的复合物对细胞的转染效率要远远高于PEI包裹质粒DNA所形成的复合物,并且小环所携带的外源基因的表达效率要远远高于质粒DNA所携带的外源基因的表达效率。实验结果表明,PEI包裹小环DNA形成的纳米颗粒在细胞转染过程中具有很高的表达效率,这一研究结果为PEI包裹小环DNA的非病毒载体系统在传输外源基因过程中的应用提供理论基础和技术支持。  相似文献   

19.
20.
Polyethylenimine (PEI) has been known as an efficient gene carrier with the highest cationiccharge potential.High transfection efficiency of PEI,along with its cytotoxicity,strongly depends on itsmolecular weight.To enhance its gene delivery efficiency and minimize cytotoxicity,we have synthesizedsmall cross-linked PEI with biodegradable linkages and evaluated their transfection efficiencies in vitro.Inthis study,branched PEI with a molecular weight of 800 Da was cross-linked by small diacrylate[1,4-butanediol diacrylate or ethyleneglycol dimethacrylate (EGDMA)] for 2-6 h.The efficiencies of thecross-linked PEI in in vitro transfection of plasmid DNA containing enhanced green fluorescent protein(EGFP) reporter gene were assessed in melanoma B 16F10 cell line and other cell lines.Flow cytometrywas used to quantify the cellular entry efficiency of plasmid and the transgene expression level.Thecytotoxicities of the cross-linked PEI in these cells were evaluated by MTT assay.EGDMA-PEI 800-4h,atypical cross-linked PEI reported here,mediated a more efficient expression of reporter gene than thecommercially available 25-kDa branched PEI control,and resulted in a 9-fold increase in gene deliveryin B16F10 cells and a 16-fold increase in 293T cells,while no cytotoxicity was found at the optimizedcondition for gene delivery.Furthermore,the transfection activity of polyplexes was preserved in thepresence of serum proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号