首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Mononucleated myoblasts and multinucleated myotubes were obtained by culturing embryonic chicken skeletal muscle cells. Comparison of total polysomes isolated from these mononucleated and multinucleated cell cultures by density gradient centrifugation and electron microscopy revealed that mononucleated myoblasts contain polysomes similar to those contained by multinucleated myotubes and large enough to synthesize the 200,000-dalton subunit of myosin. When placed in an in vitro protein-synthesizing assay containing [3H]leucine, total polysomes from both mononucleated and multinucleated myogenic cultures were active in synthesizing polypeptides indistinguishable from myosin heavy chains as detected by measurement of radioactivity in slices through the myosin band on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Fractionation of total polysomes on sucrose density gradients showed that myosin-synthesizing polysomes from mononucleated myoblasts may be slightly smaller than myosin-synthesizing polysomes from myotubes. Multinucleated myotubes contain approximately two times more myosin-synthesizing polysomes per unit of DNA than mononucleated myoblasts, and the proportion of total polysomes constituted by myosin polysomes is only 1.2 times higher in multinucleated myotubes than it is in mononucleated myoblasts. The results of this study suggest that mononucleated myoblasts contain significant amounts of myosin messenger RNA before the burst of myosin synthesis that accompanies muscle differentiation and that a portion of this messenger RNA is associated with ribosomes to form polysomes that will actively translate myosin heavy chains in an in vitro protein-synthesizing assay.  相似文献   

3.
The synthesis of the heavy chain subunit of myosin has been studied in breast muscle myoblasts from embryos of the Japanese quail, Coturnix coturnix japonica, during differentiation of these cells in culture. Specifically, these experiments were done to examine the roles of myoblast fusion and the regulation of myoblast cell division in the control of myosin heavy chain synthesis.The rates of myosin heavy chain synthesis have been quantitated in cultures of fusing myoblasts by measurement of the incorporation of radioactive leucine and valine precursors into myosin heavy chain, and simultaneous determination of the intracellular specific activities of these radioactive amino acids. These measurements demonstrate that, prior to fusion, dividing myoblasts synthesize little, if any, myosin heavy chain, but that during the period of myoblast fusion, myosin heavy chain synthesis becomes activated at least 50 to 100-fold. Myosin heavy chain synthesis was also measured in mononucleated myoblasts inhibited from fusing by the presence of EGTA in the culture medium. These experiments demonstrate that myosin synthesis can be activated in mononucleated myoblasts to reach rates similar to those attained in fused myoblasts. This activation occurs under conditions in which EGTA-inhibited myoblasts were induced to withdraw from the cell division cycle by reducing the concentrations of the serum and embryo extract components of the culture medium or by prior “conditioning” of standard growth medium.These experiments, therefore, establish that the activation of myosin synthesis in breast muscle myoblasts does not require fusion, but indicate that activation is co-ordinated with the withdrawal of myoblasts from the cell division cycle.  相似文献   

4.
The activation of muscle-specific myosin synthesis and its relationship to withdrawal from the cell cycle have been examined in cycle-synchronized myoblasts under growth-restrictive, fusion-impermissive (low Ca2+) culture conditions. Under these conditions, embryonic quail skeletal myoblasts, collected in mitosis by mechanical shake-off, complete one normal cycle and arrest in G1. The presence of skeletal muscle myosin is first detected, by indirect immunofluorescence, 8 hr into this protracted G1. Within the next 10–11 hr the percentage myosin positive (Myo+) cells increases with good synchrony, reaching approximately 95%. Refeeding with a proliferation-stimulating, low Ca2+ medium when approximately 50% of the cells are Myo+ induces reentry into S. Applying a 15-min pulse with [3H]TdR immediately preceding fixation at regular intervals following refeeding, cells can be detected which are Myo+ and whose nuclei have incorporated [3H]TdR. The numbers of such doubly labeled cells are small but consistent with the fraction of cells in S (by time-lapse analysis) at the postfeeding times sampled. These cinematographic studies also indicate that progression to mitosis following stimulation occurs slowly and asynchronously. The kinetics of progression of the stimulated cells suggest that they reenter S from a different compartment in G1 than do log-phase myoblasts. We conclude that in fusion-blocked quail myocytes irreversible withdrawal from the cell cycle is neither an obligate precondition for, nor an immediate consequence of the activation of the muscle-specific contractile gene set.  相似文献   

5.
Primary cultures of mononucleated myoblasts from 12-day-old chick embryos have a twofold higher rate of α-aminoisobutyric acid (AIB) transport before fusion occurs to form multinucleated myotubes. Several lines of evidence indicate that the uptake of AIB observed in both myoblasts and myotubes is primarily carrier-mediated by a membrane transport system. Increasing the temperature from 24 to 37°C results in a threefold increase in the rate of AIB uptake; both methionine and glycine inhibit AIB uptake by more than 85%; and 2,4-dinitrophenol inhibits AIB uptake by approximately 50%. In addition, the energies of activation (14.5 and 14.0 kcal/mole for myoblasts and myotubes, respectively) are characteristic of carrier-mediated transport. Resolution of AIB uptake into a saturable, carrier-mediated component and a nonsaturable, diffusion component shows that at concentrations of AIB≤1.5 mM over 97% of total AIB uptake is carriermediated in both myoblasts and myotubes. Kinetic analysis of carrier-mediated AIB uptake indicates that myoblasts and myotube membrane carriers have the same affinity for AIB (Km values = 1.73 and 1.31 mM, respectively). However, the Vmax for myoblasts is 23.7 nmole/mg/min while myotubes have a Vmax of 12.6 nmole/mg/min. The twofold difference in Vmax is shown to be due to a twofold difference in the quantity of membrane transport sites per milligram of protein.  相似文献   

6.
The ability of skeletal muscle myoblasts to differentiate in the absence of spontaneous fusion was studied in cultures derived from chicken embryo leg muscle, rat myoblast lines L6 and L8, and the mouse myoblast line G8. Following 48–96 hr of culture in a low-Ca2+ (25 μm), Mg2+-depleted medium, chicken myoblasts exhibited only 3–5% fusion whereas up to 64% of the cells fused in control cultures. Depletion of Mg2+ led to preferential elimination of fibroblasts, with the result that 97% of the mononucleated cells remaining at 120 hr exhibited a bipolar morphology and stained with antibodies directed against M-creatine kinase, skeletal muscle myosin, and desmin. Mononucleated myoblasts rarely showed visible cross-striations or M-line staining with anti-myomesin unless the medium was supplemented with 0.81 mM Mg2+, suggesting that Mg2+ plays a role in sarcomere assembly. Conditions of Ca2+ and Mg2+ depletion inhibited myoblast fusion in the rodent cell lines as well, but mononucleated myoblasts failed to differentiate under these conditions. Differentiated individual myoblasts from rat cell lines and from chicken cell cultures were obtained when fusion was inhibited by growth in cytochalasin B (CB). CB-treated rat myoblast cultures accumulated MM-CK to nearly twice the specific activity found in extensively fused control cultures of comparable age. Spherical cells which accumulated during CB treatment were isolated and shown to contain nearly eight times the CK specific activity present in nonspherical cells from the same cultures. Approximately 90% of these cells exhibited immunofluorescent staining with antibodies to skeletal muscle myosin, failed to incorporate [3H]thymidine or to form colonies in clonal subculture, and thus represent terminally differentiated rat myoblasts. Quantitative microfluorometric DNA measurements on individual nuclei demonstrated that the terminally differentiated myoblasts obtained in these experiments from both chicken and rat contain 2cDNA levels, suggesting arrest in the G0 stage of the cell cycle.  相似文献   

7.
Ultrastructural studies of lizard (Anolis carolinensis) myogenesis in vitro   总被引:2,自引:0,他引:2  
In vitro differentiation of lizard (Anolis carolinensis) skeletal muscle cells was studied by electron microscopy. Myogenesis was studied under conditions in which large numbers of postmitotic prefusion myoblasts accumulate (Growth Medium) and under conditions which are permissive for myotube formation (Fusion Medium). In Growth Medium, myogenic cells proliferate, then assume a characteristic spherical morphology which permits definitive identification of prefusion myoblasts. During the early stages of culture, these round myoblasts resemble myoblasts described in other systems; ultrastructural similarities and differences are discussed. After longer periods of culture in Growth Medium, a continuum of differentiation from isolated myofilaments to assembled myofibrils was seen in these mononucleated cells. These observations confirm the dissociability of contractile protein assembly and myoblast fusion Cultures maintained in Fusion Medium or transferred from Growth Medium to Fusion Medium form multinucleated myotubes on a predictable time scale. Myogenesis was followed in these cultures with particular reference to the early events in myofilament assembly and myofibril formation.  相似文献   

8.
Three myosin heavy chain isoforms with unique peptide maps appear sequentially in the development of the chicken pectoralis major muscle. An embryonic isoform is expressed early and throughout development in the embryo. A second isoform appears just after hatching and predominates by 10 days ex ovo. A third isoform, indistinguishable from adult myosin heavy chain, predominates by 8 weeks after hatching. This sequence of myosin isoform change does not, however, appear during myogenesis in vitro. In cultures prepared from embryonic myoblasts only embryonic myosin heavy chain is expressed. This is true even in cultures maintained for 30 days. Myosin light chain expression also changes in vivo with a progressive increase in fast light chain 3 accumulation. In vitro, however, this shift to increasing fast light chain 3 accumulation does not occur. The results indicate that the myosin heavy chain and light chain pattern observed in vitro is identical to that of the embryonic muscle and that the conditions necessary for the shift in expression to a more mature myosin phenotype are not present in myogenic cultures. These cultures are therefore potentially of great value in probing further the neural and humoral determinants of muscle fiber maturation and growth.  相似文献   

9.
10.
Objectives: The aim of this study was to evaluate whether hypoxia and/or erythropoietin would be able to modulate proliferation/differentiation processes of rat and human myoblasts. Materials and methods: Rat L6 and primary human myoblasts were grown in 21% or 1% O2 in the presence or absence of recombinant human erythropoietin (RhEpo). Presence of erythropoietin receptors (EpoR) was assayed using RT‐PCR and Western blotting techniques. Cell proliferation was evaluated by determining the doubling time and kinetics of cultures by counting cells. Cell differentiation was analysed by determining myogenic fusion index using antibodies against the myosin heavy chain. Expression of myogenin and myosin heavy chain (MHC) proteins were evaluated using the Western blotting technique. Results: After 96 h culture in growth medium for 2.5 and 9 h, doubling time of L6 and human primary myoblasts respectively, had increased in 1% O2 conditions (P < 0.01). Kinetics of culture showed alteration in proliferation at 72 h in L6 myoblast cultures and at 4 days in human primary myoblasts. The myogenic fusion index had reduced by 30% in L6 myoblasts and by 20% in human myoblasts (P < 0.01). Expression of myogenin and MHC had reduced by around 50%. Despite presence of EpoR mRNA and protein, RhEpo did not counteract the effects of hypoxia either in L6 cells or in human myoblasts. Conclusions: The data show that exposure to hypoxic conditions (1% O2) of rat and human myoblasts altered their proliferation and differentiation processes. They also show that Epo is not an efficient growth factor to counteract this deleterious effect.  相似文献   

11.
Fucosyl-glycopeptides synthesized in culture by duplicating myoblasts and multinucleated myotubes were partially resolved by gel-filtration on Sephadex G-50 in two main components with Kav of 0.3 and 0.6, respectively. DEAE-cellulose chromatography of fucosyl-glycopeptides resolved several components common both to myoblasts and myotubes; however an acidic component, eluted at 24 mM Na-phosphate, is present only in multinucleated myotubes. Neuraminidase treatment of this component abolished its affinity for DEAE-cellulose indicating that its anionic properties are due to the presence of sialic acid residues. Its location on the outer myotube plasma membrane is suggested by the observation that this acidic glycoconjugate was also found in the glycopeptide fraction released by mild trypsin treatment of intact cells in culture. This component appears heterogeneous since it was resolved on Sephadex G-50 into two main peaks corresponding to those obtained by gel-filtration of total glycopeptides. Differentiated postmitotic myoblasts, whose fusion has been inhibited by low Ca2+ concentration, synthesize the specific anionic glycopeptides whereas BrdU-treated myoblasts do not. Culture conditions have no effect on the synthesis of these glycopeptides, since myoblasts grown in conditioned medium, collected from myotube cultures, or myoblasts, grown at high cell density, do not synthesize this class of acidic glycopeptides.  相似文献   

12.
Summary Our previous studies have demonstrated that expression of growth-associated genes is regulated by the adhesive state of the cell. To understand the role of cell adhesion in regulating the switch from growth to differentiation, we are studying the differentiation of mouse myoblasts into multinucleated contractile myotubes. In this report, we describe a novel means of culturing C2C12 myoblasts that permits an analysis of the role of cell adhesion in regulating the sequential induction of muscle-specific genes that control myogenesis. Suspension of an asynchronous, proliferating population of myoblasts in a viscous gel of methylcellulose dissolved in medium containing 20% serum induces growth arrest in G0 phase of the cell cycle without a concomitant induction of muscle-specific genes. Reattachment to a solid substratum in 20% serum, 0.5nM bFGF, or 10 nM IGF-1 rapidly activates entry of the quiescent cells into G1 followed by a synchronous progression of the cell population through into S phase. bFGF or IGF-1 added separately facilitate only one passage through the cell cycle, whereas 20% serum or the two growth factors added together support multiple cell divisions. Adhesion of suspended cells in DMEM alone or with 3 nM IGF-1 induces myogenesis as evidenced by the synthesis of myogenin and myosin heavy chain (MHC) proteins followed by fusion into myotubes. bFGF completely inhibits this differentiation process even in the presence of myogenic doses of IGF-1. Addition of 3 nM IGF-1 to quiescent myoblasts maintained in suspension culture in serum-free conditions does not induce myogenin or MHC expression. Thus, adhesion is a requirement for the induction of muscle gene expression in mouse myoblasts. The development of a muscle cell culture environment in which proliferating myoblasts can be growth arrested in G0 without activating muscle-specific gene expression provides a means of analyzing the synchronous activation of either the myogenic or growth programs and how adhesion affects each process, respectively. Supported by training grant T32-HL07035  相似文献   

13.
Lines of rat myoblasts infected by avian sarcoma viruses have been isolated, cloned, and used to study the effects of viral transformation on myogenic differentiation and the surface changes associated with differentiation. The lines transformed by sarcoma viruses failed to fuse into myotubes and did not show the increase in myosin synthesis normally associated with fusion. The parental nontransformed line showed, subsequent to fusion, a surface alteration detectable by external labeling methods. This alteration, an increase in the level of an external protein of MW > 200 × 103, is similar to that observed in fibroblasts arrested in the G1 phase of the cell cycle. This protein was absent or greatly reduced on the surfaces of the myoblast lines that had been transformed by sarcoma viruses. Therefore, viral transformation causes loss of several properties normally associated with arrest of myoblasts in G1.  相似文献   

14.
A monoclonal antibody to the heavy chain of myosin from mouse 3T3 cells was used to identify myosin heavy chains in four flowering plants and to identify and localize them in the green alga Chara. The Mr of the immunoreactive bands varied from ca 200 000 in Chara and Arabidopsis to 170 000 in mung beans, peas and wheat. An additional band of 158 000-Mr was resolved in roots and shoots of mung beans. Chara contained a second, immunoreactive band of 110 000-Mr whose possible relationship to the tail-less myosin I enzymes is discussed.Immunofluorescence of giant internodal cells of Chara showed that myosin was almost entirely confined to the streaming endoplasm. Individual organelles and beaded endoplasmic strands were heavily labelled as were the sub-cortical filament bundles. Actin, in contrast, was confined to the sub-cortical bundles. It is proposed that force is generated by interaction of the actin in the subcortical bundles with myosin on individual organelles and on the beaded endoplasmic strands. By ramifying through the endoplasm, the strands may ensure the cohesive movement of the whole mass of endoplasm.  相似文献   

15.
The second harmonic generation (SHG) signal intensity sourced from skeletal muscle myosin II strongly depends on the polarization of the incident laser beam relative to the muscle fiber axis. This dependence is related to the second-order susceptibility χ(2), which can be described by a single component ratio γ under generally assumed symmetries. We precisely extracted γ from SHG polarization dependence curves with an extended focal field model. In murine myofibrillar preparations, we have found two distinct polarization dependencies: With the actomyosin system in the rigor state, γrig has a mean value of γrig = 0.52 (SD = 0.04, n = 55); in a relaxed state where myosin is not bound to actin, γrel has a mean value of γrel = 0.24 (SD = 0.07, n = 70). We observed a similar value in an activated state where the myosin power stroke was pharmacologically inhibited using N-benzyl-p-toluene sulfonamide. In summary, different actomyosin states can be visualized noninvasively with SHG microscopy. Specifically, SHG even allows us to distinguish different actin-bound states of myosin II using γ as a parameter.  相似文献   

16.
AN ANALYSIS OF MYOGENESIS BY THE USE OF FLUORESCENT ANTIMYOSIN   总被引:45,自引:34,他引:11       下载免费PDF全文
Antibodies against myosin of adult chicken skeletal muscle were labelled with fluorescein and used as staining reagents to analyze the development of trunk myoblasts in the chick embryo. Myoblasts from the brachial myotomes were studied in three ways: (a) Specimens were fixed, sectioned, and stained with iron-hematoxylin. (b) Living myoblasts, and myoblasts prepared by glycerol extraction, were teased and examined by phase contrast microscopy. (c) Embryo trunks were treated with fluorescent antimyosin or with a control solution of fluorescent normal globulin, and were examined by fluorescence and phase contrast microscopy. Both glycerol-extracted and fixed materials were used. Cross-striated myofibrils appeared first in stage 16 to 17 embryos in the series studied by antimyosin staining and fluorescence microscopy. Striated myofibrils appeared first in stage 18 to 19 embryos, in the series stained by iron-hematoxylin, and at stage 22 to 23, in the series studied by glycerol extraction and phase contrast microscopy. In each series, myofibrils without apparent cross-striations were detected shortly before cross-striations were observed. Specific staining by antimyosin occurred only in differentiating myoblasts. Within the myoblasts antimyosin staining was confined to the A bands of the slender myofibrils. The following observations suggest that the first delicate striated structure to appear in the early 3 day myoblast was remarkably mature: (1) The sarcomere pattern both in length and in internal detail, was similar to that of adult muscle. (2) The distribution of myosin, as revealed by antimyosin staining, was the same in the embryonic as in the mature myofibril. (3) Glycerol-extracted myoblasts contracted vigorously on exposure to ATP. The changes in sarcomere band pattern were indistinguishable from those occurring during contraction of adult muscle induced by ATP. (4) ATP contraction was blocked by prior antimyosin staining in embryonic myoblasts as in mature muscle. It is suggested that the early myofibril grows laterally as a thin sheet associated with the sarcolemma, and that growth in length occurs in the growth tips of the elongating myoblast.  相似文献   

17.
In this study we compared the body temperature of 16 populations belonging to five species of the genus Cnemidophorus from restinga habitats along the eastern coast of Brazil in order to evaluate the importance of how some environmental factors affect lizard body temperatures. Cloacal body temperatures (Tb) were taken immediately after capture with a quick-reading thermometer (Schultheis). Substrate temperatures (Ts) and air temperatures (Ta; approximately 1 cm above the substrate) were taken as close as possible to the point when each lizard was initially sighted. Most of the mean body temperatures in activity of the different populations and species of Cnemidophorus along the coast of Brazil ranged from 36.5 to 39.3 °C, except for Cnemidophorus lacertoides (Tb=35.2 °C) in the restinga of Joaquina, SC and for Cnemidophorus ocellifer (Tb=34.8 °C ) in the restinga of Praia do Porto, SE. Some studies show that the body temperature of lizards is more related to phylogenetic than ecological factors, suggesting that species of the same genus tend to have similar body temperatures even occurring in different types of environments. In general, regardless of the locality and latitude along the eastern coast of Brazil, the different species of lizards of the genus Cnemidophorus and their respective populations have similar body temperatures in activity and the apparent differences result from the influence of the local thermal environment of each restinga.  相似文献   

18.
Transformation is an alternative to normal skeletal muscle development   总被引:6,自引:0,他引:6  
The differentiation of skeletal muscle is characterized by cessation of proliferation and fusion of single myoblasts to form non-replicating multinucleate fibers (myotubes). If termination of proliferation is an obligate requirement for further differentiation, myoblasts defective in this stage of development should fail to fuse or exhibit any further characteristics of myotubes. Furthermore, myoblasts which have lost the ability to control and cease proliferation may represent a transformed, potentially tumorigenic population. Formation of the neoplastic state may therefore be viewed as an alternate path, antithetical to the normal differentiation of skeletal muscle. To test this hypothesis, we isolated 13 clones of non-fusing cells from the myogenic L8 line of rat myoblasts. In contrast to the L8 line, all of the non-fusing clones maintain their proliferative capacity, do not form myotubes, nor elevated creatine kinase activity nor increased myosin, but do develop into tumors when injected into athymic mice. L8 cells do not produce tumors in these mice. Analysis of cell growth and serum requirements, plasminogen activator, hexose transport, adhesiveness, LETS protein and growth in soft agar, indicates that these non-fusing cells are transformed and clearly distinguished from the parent L8 cells. Whereas the L8 line maintains a near diploid complement of chromosomes, all non-fusing clones were polyploid. In addition, 12 of 13 non-fusing clones (but not the L8 cells) express an endogenous type C virus. Although all clones defective in differentiation formed tumors, no single in vitro characteristic was found to be a constant index of this tumorigenic capacity. We conclude that cessation of proliferation is an obligate requirement for skeletal myogenesis, that transformation is an alternative to normal skeletal muscle development and that the phenotype of these transformed cells may be quite varied.  相似文献   

19.
During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.  相似文献   

20.
This study describes the first in vitro culturing of canine cardiac cells. Canine cardiac myosin which was synthesized in a 14-day tissue culture, based on l-[3H]leucine incorporation, was precipitated with goat γG antimyosin (cardiac-specific) and analyzed on dodecylsulfate gels; the specific activity of the highly purified myosin chains was determined. Incorporation of 32PO4 was similarly analyzed. The comparative degree of synthesis and phosphorylation of myosin chains, occurring in culture, was the same as that obtained in vivo. Both l-[3H]leucine and 32PO4 incorporation were inhibited by addition of cycloheximide to the culture medium. Removal of 32PO4 from myosin heavy chains with base treatment indicated the presence of phosphoserine and/or phosphothreonine in canine cardiac myosin heavy chains. Myosins from fetal and adult canine cardiac tissue were immunologically identical with each other and with the cultured fetal tissue; all had similar myosin ATPase activity and the degree of heavy chain phosphorylation was similar. The tissue and techniques used here gave a high yield of cardiac myocytes based principally on synthesis of cardiac-specific myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号