首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin-layer chromatographic (t.l.c.) analysis of the products formed from the incubation of an acetone-pentane powder of sheep vesicular gland microsomes with 7,10,13,16-docosatetraenoic acid (adrenic acid) revealed the presence of two products having Rf values identical to PGE2 and PGF. These products were purified by t.l.c., derivatized by treatment with methoxyamine, diazomethane, and N,O-bis-(trimethylsilyl)-trifluoroacetamide, and these derivatives used for gas chromatography and gas chromatographymass spectrometry. The results were consistent with 1a,1b-dihomo-PGE2 and 1a,1b-dihomo-PGF proposed structures. Formation of 1a,1b-dihomo-PGF could be increased, at the expense of 1a,1b-dihomo-PGE2, by the addition of copper and reduced glutathione to the incubation mixture. Reduction of 1a,1b-dihomo-PGE2 with NaBH4 in methanol resulted in total conversion to two products having chemical and physical properties consistent with 1a,1b-dihomo-PGF and 1a,1b-dihomo-PGF proposed structures. The initial rate of adrenic acid-dependent oxygen uptake was determined to be 25% of that of arachidonic acid. The prostaglandin synthetase inhibitors, naproxen and 5,8,11,14-eicosatetraynoic acid (Ro 3-1428) inhibited adrenic acid-dependent oxygen uptake; Ro 3-1428 was shown to be a time-dependent inhibitor.  相似文献   

2.
Thin-layer chromatographic (t.l.c.) analysis of the products formed from the incubation of an acetone-pentane powder of sheep vesicular gland microsomes with 7,10,13,16-docosatetraenoic acid (adrenic acid) revealed the presence of two products having Rf values identical to PGE2 and PGF2alpha. These products were purified by t.l.c., derivatized by treatment with methoxyamine, diazomethane, and N,O-bis-(trimethylsily1)-trifluoroacetamide, and these derivatives used for gas chromatography and gas chromatography-mass spectrometry. The results were consistent with 1a, 1b-dihomo-PGF2 and 1a, 1b-dihomo-PGF2alpha proposed structures. Formation of 1a, 1b-dihomo-PGF2 alpha could be increased, at the expense of 1a, 1b-dihomo-PGE2 by the addition of copper and reduced glutathione to the incubation mixture. Reduction of 1a, 1b-dihomo-PGE2 with NaBH4 in methanol resulted in total conversion to two products having chemical and physical properties consistent with 1a, 1b-dihomo-PGF2alpha and 1a, 1b-dihomo-PGF2beta proposed structures. The initial rate of adrenic acid-dependent oxygen uptake was determined to be 25% of that of arachidonic acid. The prostaglandin synthetase inhibitors, naproxen and 5,8,11,14-eicosatetraynoic acid (Ro 3-1428) inhibited adrenic acid-dependent oxygen uptake; Ro 3-1428 was shown to be a time-dependent inhibitor.  相似文献   

3.
Recently we have found that chemotactic factors stimulate neutrophils in suspension to aggregate. Because of an obvious analogy to platelet aggregation, we examined the influence of three prostaglandins on this process. Prostaglandins E1, E2 and F alone did not cause aggregation of the neutrophils but were able to partially inhibit the aggregation response induced by the synthetic chemotactic tripeptide, formly-methionyl-leucyl-phenylalanine. The minimal inhibitory concentrations for prostaglandins E1, E2 and F were 10−7, 10−6 and 10−5M, respectively. These results are similar to those found for the prostaglandin-induced inhibition of platelet aggregation. It may be, therefore, that neutrophil aggregation, like platelet aggregation, is modulated by intracellular prostaglandins and other products of arachidonic acid metabolism.  相似文献   

4.
Washed rabbit red blood cells (RBCs) were suspended in electrolyte solution containing 3H-labeled prostacyclin (PGI2), thromboxane (TxB2) or 6-keto-PGF and 14C-labeled sucrose or thiourea. Following 1 to 30 min incubation with 14C-sucrose, 3H-TxB2 or 3H-6-keto-PGF, the 14C or 3H space of packed RBCs remained essentially constant, yielding mean values (±S.E.) for all time periods of 6.1 ± 0.3, 9.5 ± 0.5 and 6.5 ± 0.4%, respectively. After 1 min of incubation at 4° or 23°C at a pH of 7.4 or 8.5 with trace amounts (10−9M) of 3H-PGI2 or in the presence of added PGI2 (10−5M) or ethacrynic acid (1.6 × 10−4M), the apparent PGI2 space of packed RBCs ranged from 16 to 27%, decreasing to about 7% by 30 min. When RBCs were resuspended in fresh 3H-PGI2 every 5 min, their 3H content increased very slowly (apparent PGI2 space <40% at 30 min) as compared to thiourea (distribution space > 80% within 5 min). Over 90% of this 3H activity was lost from the RBCs in less than 2 min during elution at 4° or 23°C. It is concluded that RBC membranes and thus, presumably, the basic cell membrane in general, is not fundamentally permeable to PGI2, 6-keto-PGF or TxB2. Hence, the effective entry of these cyclooxygenase products into some cells or their passage across tight-junctional capillaries or epithelial membranes must require facilitated or active transport processes as was shown to be the case for E, F and A PGs. This implies that the distribution, pharmacological action and metabolism of these and presumably all related cyclooxygenase products are selective rather than unrestricted.  相似文献   

5.
A method for quantification of 6-keto-PGF, 2,3-dinor-6-keto-PGF, TXB2, 2,3-dinor TXB2, PGE2, PGD2 and PGF in human urine samples, using gas chromatography—negative ion chemical ionization mass spectrometry, is described. Deuterated analogues were used as internal standards. Methoximation was carried out in urine samples which were subsequently applied to phenylboronic acid cartridges, reversed-phase cartridges and thin-layer chromatography. The eluents were further derivatized to pentafluorobenzyl ester trimethylsilyl ethers for final quantification by gas chromatography—mass spectrometry. The overall recovery was 77% for tritiated 6-keto-PGF and 55% for tritiated TXB2. Urinary levels of prostanoids were determined in a group of six volunteers before and after intake of the thromboxane synthase inhibitor Ridogrel, and related to creatinine clearance.  相似文献   

6.
The accumulation and output of 3H -prostaglandins (PGs), E2 and F2α, into and from uterine strips isolated from ovariectomized rats, either in presence or in absence of exogenous progesterone, were explored. Tissue-to-medium ratio of 3H - counts (T/M-ratio), was determined. The same was done in solutions containing 14C-sucrose. During a 60 min incubation period in a solution containing 3H -PGF2α, a net accumulation of radioactivity was evident in control (no progesterone) uterine slices. The T/M-ratio for 3H-PGF2α, increased with time, reaching maximal values at 45 min. Progesterone (100 ug.ml−1) attenuated the uptake process, as evidenced by stable values of T/M-ratio, as time progressed. On the other hand, control T/M-ratio for fluenced by the presence of exogenous progesterone. Regarding labelled PG release from the tissue, it was observed that, during an experimental period of 60 min, most tritium from control slices was released within the first 30 min after incubation with 3H -PGF2α, whereas, following the presence and subsequent removal of exogenous progesterone, the bulk of 3H -released took place at 6–70 min. On the other hand, the release of 3H after an incubation with 3H -PGE2, was also maximal as that for 3H -PGF2, α within the first 30 min and resulted not altered after a period of exposure and removal of progesterone. The foregoing results suggest an specific pharmacological effect of progesterone, attenuating the uptake and retarding the outflow of PGF2α, but not that of PGE2, into and from uterine slices of ovariectomized rats. Findings reported herein are discussed in terms of progesterone priming and withdrawal, in relation to PGF2α fluxes in the rat uterus during the sex cycle, as well as in relation to PG binding to tissue receptors.  相似文献   

7.
Prostaglandin (PG)F, E2, D2 and 6-keto-F were determined in human cerebrospinal fluid by a mass spectrometric technique. The samples were obtained from 12 patients with suspected intracranial disease. A 64 fold variation in PG levels was observed. The major PG was 6-keto-F (0.12–15 ng/ml). PGF and PGE2 were present in lower concentrations PGD2 was below the level of detection (0.05 ng/ml) except in one patient with extremely high total levels of PGs.  相似文献   

8.
Incubations of PGG2 with aortic microsomes yielded two products which were not formed in boiled enzyme control, one of which was 6-oxo-PGF. The major metabolite was identified by gas-liquid chromatography-mass spectrometry as 6,15-dioxo-PGF. Thus, unlike PGH2, PGG2 is probably converted to 15-hydroperoxy PGI2 which subsequently decomposes to 6,15-dioxo-PGF.  相似文献   

9.
Prostaglandin F2α (5μg/kg, i.v.) causes an increase in pulmonary arterial pressure, decrease in systemic arterial pressure, and reflex bradycardia in the anesthetized cat. The same dose of the 15-methyl analogue of PGF2α produces the same triad of effects but of greater magnitude and duration. Although prostaglandins F1α, F2β and F1β also cause the same cardiovascular effects as F2α, there is a decrease in potency for all parameters measured, with PGF2α>PGF1α>PGF2β>PGF1β. When compared to the actions of PGF2α in producing an increase in pulmonary arterial pressure, PGs F1α, F2β and F1β were less potent by approximately 10, 100, and 1000 fold respectively.  相似文献   

10.
Bovine gastric mucosal and muscle microsomes synthesize prostaglandins and thromboxane B2 (TXB2) from arachidonic acid (AA). TXB2 and 6-keto-prostaglandin F1α (6-keto-PGF1α) were the major products synthesized by pylorus, body, and cardiac region of the gastric mucosa. Gastric muscle mainly synthesized 6-keto-PGF1α. TXB2 and 6-keto-PGF1α synthesis occurs at an appreciable rate from endogenous precursors but more rapidly with added arachidonate. Prostaglandins E2, F2α and D2 were synthesized in smaller amounts under the conditions studied.  相似文献   

11.
Prostaglandins (PG)I2, PGE2 and 6-keto PGF1α were infused directly into the gastric arterial supply at 10−9, 10−8 and 10−7 g/kg/min during an intra-gastric artery pentagastrin infusion in anesthetized dogs. 6-keto PGF1α was also infused at 10−6 g/kg/min. Gastric arterial blood flow was measured continuously with a non-cannulating electromagnetic flow probe and gastric acid collected directly from the stomach. PGI2 and PGE2 produced similar dose-dependent increases in blood flow with an increase of more than four-fold at the highest dose. Both PGs inhibited acid output over this dose range with PGE2 having 10 times the potency of PGI2. 6-keto PGF1α was at least 1000 times less active than PGI2 or PGE2 at increasing blood flow and failed to inhibit acid output even at 10−6 g/kg/min.  相似文献   

12.
The effects of prostaglandins E2 (PGE2), I2 (PGI2) and F2α (PGF2α), arachidonic acid and indomethacin on pressor responses to norepinephrine were examined in conscious rats. Intravenously infused PGE2 (0.3, 1.25 μg/kg/min), PGI2 (50, 100 ng/kg/min), PGF2α (1.8, 5.4 μg/kg/min) and arachidonic acid (0.7, 1.4 mg/kg/min) did not change the basal blood pressure. Both PGE2 and PGI2 significantly attenuated pressor responses to norepinephrine, whereas PGF2α significantly potentiated them. Arachidonic acid, a precursor of the prostaglandins (PGs), significantly attenuated pressor responses to norepinephrine. Since the attenuating effect of arachidonic acid was completely abolished by the pretreatment with indomethacin (5 mg/kg), arachidonic acid is thought to exert an effect through its conversion to PGs. On the contrary, intravenously injected indomethacin (0.2–5.0 mg/kg) facilitated pressor responses to norepinephrine in a dose-related manner without any direct effect on the basal blood pressure. These results suggest that endogenous PGs may participate in the regulation of blood pressure by modulating pressor responses to norepinephrine in conscious rats.  相似文献   

13.
We have investigated the direct effects of prostaglandins E1, E2, F and D2 on renin release from rabbit renal cortical slices. Prostaglandin E1 (PGE1) was the most potent stimulant of renin release, while PGE2 was 20–30 fold less active. PGF was found not to be an inhibitor of renin release as reported by others, but rather a weak agonist. PGD2 up to a concentration of 10 μg/ml had no activity in this system. That the stimulation of renin release by PGE1 is a direct effect is supported by the finding that PGE1-induced release is not blocked by L-propranolol or by Δ5,8,11,14-eicosatetraynoic acid (ETYA), a prostaglandin synthesis is inhibitor. The fatty acid precursor of PGE1, Δ8,11,14-eicosatrienoic acid, also stimulated renin release, an effect which was blocked by ETYA. In addition to the above findings, ethanol, a compound frequently used to dissolve prostaglandins, was shown to inhibit renin release.  相似文献   

14.
In these experiments we have examined the effects of PGE1, PGE2, PGF and PGF on synovial perfusion in the normal canine synovial microcirculation. The effects of the drugs on synovial perfusion were determined indirectly from the changes produced in the rate of clearance of 133Xenon from the joint by their intra-articular injection. Prostaglandins PGE1 and PGE2 were found to be strongly vasodilator with PGE1 being the more active. PGF appeared to have little or no vasoactive properties in doses up to 1 ugm. (2.8 × 10−5M) in our I preparation while PGF was vasodilator at this high dosage only. Neither SC19920 nor diphloretin phosphate antagonised the effects of PGE1 in these experiments.  相似文献   

15.
Intact rings and homogenates of aorta from spontaneously hypertensive rats (SHR) contain enhanced capacity over normal rats (NR) to convert arachidonic acid into PGI2. The PGI2 synthetic system in SHR is stimulated to a greater extent than NR by norepinephrine. Indomethacin blocks this stimulation. PGE2 and PGF were detected in much smaller amounts in homogenates (undetected in rings) but their formation was not enhanced by the hypertensive tissue. The identity of PGI2 was based on 1) direct pharmacological assay on the rat blood pressure. In this system identical vasodepressor responses to PGI2 are observed after intracarotid and intrajugular administration 2) indirectly as 6-keto PGF isolated after incubation of aortic homogenates with tritiated arachidonic acid and 3) indirectly by GC-MS assay of PGE2, PGF and 6-keto PGF formed during incubation of aortic homogenates with excess unlabeled arachidonic acid. These results provide additional support to our recent hypothesis that PGI2, of aortic origin, might actively participate in the regulation of systemic blood pressure. Its enhanced formation by intact hypertensive vascular tissue reflects an increase in the number of enzyme molecules immediately available to the substrate. This could probably be an adaptive response to the elevated levels of catecholamines in the circulation.  相似文献   

16.
Thromboxane A2 was generated by incubation of arachidonic acid with a suspension of human platelets. The filtrate contained 266 ± 46 ng/ml (n=10) of thromboxane A2 and 25 ng/ml or less of prostaglandin endoperoxides (prostaglandins G2+H2). Thromboxane A2 was 2–10 times more potent than prostaglandin H2 and 9–102 times and 26–308 times more potent than prostaglandins E2 and F2α, respectively, in causing contractions of the superfused swine coronary artery.  相似文献   

17.
Pregnant hamsters were administered (SC) prostaglandin or vehicle on the morning of the 4th day of pregnancy. Serum progesterone was significantly depressed (p<.01) at 0.5, 2, and 6 hours after treatment with 100 μg PGF. Serum progesterone levels were unchanged 2 hours and 6 hours after treatment with 100 μg PGF and 2 hours after treatment with 1 mg PGF. Progesterone levels were depressed to less than 1 ng/ml 6 hours after treatment with 1 mg PGF. The specific uptake of 3H-PGF in whole hamster corpora lutea was significantly depressed 2 hours and 6 hours following 100 μg PGF treatment. A 15% depression in specific uptake occurred 0.5 hour post-treatment. Treatment with 100 μg PGF resulted in no change. Administration of 1 mg PGF resulted in depressed 3H-PGF uptake at both 2 and 6 hours post-treatment.Prostacyclin (PGI2) treatment resulted in no change in either 3H-PGF specific uptake or serum progesterone 2 hours after 100 μg treatment SC. These parameters were both reduced approximately 30% 6 hours post-treatment. Treatment with 6-keto-PGF resulted in a complete lack of measurable 3H-PGF uptake and serum progesterone levels less than 1 ng/ml at both 2 and 6 hours after treatment with 1 mg SC.  相似文献   

18.
Explants from term human placentas were maintained in culture with daily changes of medium. Daily output of PGF and PGFM1 decreased during the course of the incubation. Addition of 4 μg/ml DHEAS or 67 μg/ml LDL cholesterol had no effect on output of PGF or PGFM. Addition of 1.6, 3.2, or 6.4 μg/ml of LHRH to the culture plates had no effect on output of PGFM or PGF, but LHRH increased hCG output. Dibutyryl cAMP (1mM, 2mM, and 4mM) increased output of PGF, PGFM, and hCG. Aromatase inhibitor decreased hCG output, but it was without effect on output of PGF, or PGFM. Significant correlations were demonstrated between progesterone, PGFM, PGF, and hCG, suggesting that PGF originates in the syncytiotrophoblast cell. The ability of LHRH to stimulate output of hCG but not PGF while dbcAMP stimulated both suggests that either PGF and hCG arise in different cells or that LHRH does not act through cAMP.  相似文献   

19.
The release of 6-keto-prostaglandin F (6KF)_and of thromboxane B2 (TXB2) from cells were investigated using mouse peritoneal exudate cells (PECs) and non-cultured peritoneal macrophages. They were prepared by adhesion to glass dishes and incubated for 1 hr at 37°C in 5% Co2 in air. Both the percentage of spreading macrophages and the release of 6KF and TXb2 increased in proportion to the incubation time. 6KF and TXB2 were released from the macrophages, not from the non-adherent cells. When PECs were incubated in silicon-coated glass dishes, the spreading of macrophages was hardly detected and lower amounts of 6KF and TXB2 were released from these cells compared with cells incubated in non-treated glass dishes. These findings suggest that adhesion with the correlated spreading of macrophages on glass dishes serve as a considerable physical factor for the release of 6KF and TXB2.  相似文献   

20.
The present study has been performed to investigate how PGs would participate the hatching process. Effects of indomethacin, an antagonist to PGs biosynthesis, on the hatching of mouse blastocysts were examined in vitro. Furthermore, it was studied that prostaglandin E2 (PGE2), prostaglandin F (PGF) or 6-keto-prostaglandin F (6-keto-PGF) were added to the culture media with indomethacin. (1) The hatching was inhibited by indomethacin yet the inhibition was reversible. (2) In the groups with indomethacin and PGE2, no improvement was seen in the inhibition of hatching and the inhibition was irreversible. (3) In the groups with indomethacin and PGF, inhibition of hatching was improved in comparison with the group with indomethacin. (4) In the groups with indomethacin and 6-keto-PGF, no improvement was seen. The above results indicated that PGF possibly had an accelerating effect on hatching and a high concentration of PGE2 would exert cytotoxic effect on blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号