首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Activity to convert serine to selenocysteine in B. subtilis was studied but no activity was detected. In addition, although we tried to find its selenocysteine tRNA (tRNA(SeCys)) gene from a total genome sequence (1) by the computer search with FASTA against E. coli selC (2), no convincing candidate was found. These results suggest that in B. subtilis, selenium-related system is considerably different from known one like E. coli.  相似文献   

2.
3.
One of the recent discoveries in protein biosynthesis was the finding that selenocysteine, the 21st amino acid, is cotranslationally inserted into polypeptides under the direction of a UGA codon assisted by a specific structural signal in the mRNA. The key to selenocysteine biosynthesis and insertion is a special tRNA species, tRNA(Sec). The formation of selenocysteine from serine represents an interesting tRNA-mediated amino acid transformation. tRNA(Sec) (or the gene encoding it) has been found over all three domains of life. It displays a number of unique features that designate it a selenocysteine-inserting tRNA and differentiate it from canonical elongator tRNAs. Although there are still some uncertainties concerning the precise secondary and tertiary structures of eukaryal tRNA(Sec), the major identity determinant for selenocysteine biosynthesis and insertion appears to be the 13 bp long extended acceptor arm. In addition the core of the 3D structure of these tRNAs is different from that of class II tRNAs like tRNA(Sec). The biological implications of these structural differences still remain to be fully understood.  相似文献   

4.
tRNA (adenine-1) methyltransferase occurs in Bacillus subtilis. Eucaryotic tRNAThr and tRNATyr from yeast in which 1-methyladenosine (m1A) is already present in the TpsiC loop, can be methylated in vitro with S-adenosylmethionine and B. subtilis extracts. Each of the specific tRNAs accepts 1 mol of methyl groups per mol tRNA. The enzyme transforms into m1A the 3'-terminal adenylic acid residue of the dihydrouridine loop, a new position for a modified adenosine residue in tRNA. Both tRNAs have the sequence Py-A-A-G-G-C-m2(2)G in the D-loop and D-stem region. Other tRNAs with the same sequence in this region also serve as substrates for the tRNA (adenine-1) methyltransferase.  相似文献   

5.
Bulk tRNA from yeast and Rat liver can be methylated in vitro with -adenosylmethionine and B, subtilis extracts. The sole product formed is 1-methyladenosine (m1A). This tRNA (adenine-1) methyltransferase converts quantitatively the 3'-terminal adenosine-residue in the dihydrouridine-loop of tRNAThr and tRNATyr from yeast into m1A. Out of 16 eucaryotic tRNAs with known sequences 6 accepted methyl groups, all at a molar ratio of 1. These tRNAs have in common an unpaired adenosine-residue at the specific site in the sequence Py-A-A+-G-G-C-m2G. Out of 12 tRNAs from E. coli 6 served as specific substrates. These E. coli tRNAs also have an unpaired adenosine-residue at the 3'-end of the D-loop. Besides restrictions in primary structure intact secondary and tertiary structure is important for recognition of the specific tRNAs by the enzyme.  相似文献   

6.
Characterizing Sec tRNAs that decode UGA provides one of the most direct and easiest means of determining whether an organism possesses the ability to insert selenocysteine (Sec) into protein. Herein, we used a combination of two techniques, computational to identify Sec tRNA genes and RT-PCR to sequence the gene products, to unequivocally demonstrate that two widely studied, model protozoans, Dictyostelium discoideum and Tetrahymena thermophila, encode Sec tRNA in their genomes. The advantage of using both procedures is that computationally we could easily detect potential Sec tRNA genes and then confirm by sequencing that the Sec tRNA was present in the tRNA population, and thus the identified gene was not a pseudogene. Sec tRNAs from both organisms decode UGA. T. thermophila Sec tRNA, like all other sequenced Sec tRNAs, is 90 nucleotides in length, while that from D. discoideum is 91 nucleotides long making it the longest eukaryotic sequenced to date. Evolutionary analyses of known Sec tRNAs reveal the two forms identified herein are the most divergent eukaryotic Sec tRNAs thus far sequenced.  相似文献   

7.
8.
Within the frame of an attempt to sequence the whole Bacillus subtilis genome, a region of 5.5 kbp of the B. subtilis chromosome near the sacS locus has been sequenced. It contains five complete coding sequences, including the sequence of sacY, three unknown CDS and a sequence coding for a tyrosine tRNA synthetase. That the corresponding CDS encodes a functional synthetase has been demonstrated by complementation of an Escherichia coli mutant possessing a thermosensitive tRNA synthetase. Insertion of a kanamycin resistance cassette in the B. subtilis chromosome at the corresponding locus resulted, however, in no apparent phenotype, demonstrating that this synthetase is dispensable. Finally phylogenetic relationships between known tyrosine and tryptophan tRNA synthetases are discussed.  相似文献   

9.
K Okamoto  P Serror  V Azevedo    B Vold 《Journal of bacteriology》1993,175(14):4290-4297
A new approach for mapping genes which utilizes yeast artificial chromosome clones carrying parts of the Bacillus subtilis genome and the polymerase chain reaction technique is described. This approach was used to physically map stable RNA genes of B. subtilis. Results from over 400 polymerase chain reactions carried out with the yeast artificial chromosome clone library, using primers specific for the genes of interest and designed from published sequences, were collected. The locations of 10 known rRNA gene regions (rrnO, rrnA, rrnE, rrnD, rrnB, rrnJ-rrnW, and rrnI-rrnH-rrnG) have been determined by this method, and these results correlate with those observed by standard genetic mapping. All rRNA operons, except rrnB, are found between 0 and 90 degrees, while rrnB has been placed in the area of 270 degrees on the chromosome map. Also localized were the tRNA gene clusters associated with the following ribosomal operons: rrnB (21 tRNAs), rrnJ (9 tRNAs), rrnD (16 tRNAs), and rrnO and rrnA (2 internal tRNAs). A previously unmapped four-tRNA gene cluster, trnY, a tRNA gene region that is not associated with a ribosomal operon, was found near the origin of replication. The P-RNA gene, important for processing of tRNAs, was found between map locations 197 and 204 degrees.  相似文献   

10.
A cluster of nine tRNA genes located in the 1-kb region between ribosomal operons rrnJ and rrnW in Bacillus subtilis has been cloned and sequenced. This cluster contains the genes for tRNA(UACVal), tRNA(UGUThr), tRNA(UUULys), tRNA(UAGLeu). tRNA(GCCGly), tRNA(UAALeu), tRNA(ACGArg), tRNA(UGGPro), and tRNA(UGCAla). The newly discovered tRNA gene cluster combines features of the 3'-end of trnI, a cluster of 6 tRNA genes between ribosomal operons rrnI and rrnH, and of the 5'-end of trnB, a cluster of 21 tRNA genes found immediately 3' to rrnB. Neither the tRNA(UAGLeu) gene nor its product has been found previously in B. subtilis. With the discovery of this new set of tRNA genes, a total of 60 such genes have now been found in B. subtilis. These known genes account for almost all of the tRNA hybridizing restriction fragments of the B. subtilis genome. The 60 known tRNA genes of B. subtilis code for only 28 different anticodons, compared with a total of 41 different anticodons for 78 tRNA genes in Escherichia coli. This may indicate that B. subtilis does not need as many anticodons because of more flexible translation rules, similar to the situation in Mycoplasma capricolum.  相似文献   

11.
U Burkard  D S?ll 《Nucleic acids research》1988,16(24):11617-11624
The nucleotide sequence of the gene encoding the Escherichia coli selenocysteine tRNA (tRNA(SeCys] predicts an unusually long acceptor stem of 8 base pairs (one more than other tRNAs). Here we show by in vivo experiments (Northern blots, primer extension analysis) and by in vitro RNA processing studies that E. coli tRNA(SeCys) does contain this additional basepair, and that its formation results from abnormal cleavage by RNase P.  相似文献   

12.
13.
The nucleotide sequence of Mycoplasma mycoides sp. capri PG3 formylmethionine tRNA has been determined, using in vitro labeling techniques, to be pC-G-C-G-G-G-G-s4U-A-G-A-G-C-A-G-U-D (U)-G-G-D-A-G-C-U-C-G-C-C-G-G-G-C-U-C-A-U-A-A-C-C-C-G-G-A-G-G-C-C-G-C-A-G-G-U-psi- C-G-A-G-U-C-C-U-G-C-C-C-C-C-G-C-A-A-C-C-AOH. This tRNA contains only three modified nucleosides s4U, D and psi, all of which are derived from uridine. Both in the structural features which distinguish eukaryotic from prokaryotic initiator RNAs and in the overall sequence, this tRNA resembles a typical prokaryotic initiator tRNA. A comparison of the sequence of this tRNA with those of other prokaryotic initiator tRNAs suggests that taxonomically the Mycoplasma may be less related to the Cyanophyta (Anacystis nidulans) than to the bacteria and less related to the Enterobacteriaceae (Escherichia coli) than to the Bacillaceae (Bacillus subtilis).  相似文献   

14.
tRNA methyltransferases from extract of yellow lupin seeds were purified over 300-fold by the methods based on hydrophobic and affinity chromatography. However, in the most active fractions the methylating enzymes were over 2000 purified. The purified enzyme fractions catalysed the formation of 1-methyladenine and 5-methylcytosine using E. coli B and B. subtilis tRNAs as substrates and S-adenosylmethionine as the methyl donor. They were unable to methylate their own endogenous tRNA but they were capable of methylating tRNA of some other lupinus species. Whereas the patterns of methylated constituents of tRNA of some other lupinus and B. subtilis were quite similar, they differed considerably from those obtained with lupin species tRNAs. Some properties of purified methyltransferases from yellow lupin seeds have been described.  相似文献   

15.
Eukaryotic selenocysteine (Sec) protein insertion machinery was thought to be restricted to animals, but the occurrence of both Sec-containing proteins and the Sec insertion system was recently found in Chlamydomonas reinhardtii, a member of the plant kingdom. Herein, we used RT-PCR to determine the sequence of C. reinhardtii Sec tRNA[Ser]Sec, the first non-animal eukaryotic Sec tRNA[Ser]Sec sequence. Like its animal counterpart, it is 90 nucleotides in length, is aminoacylated with serine by seryl-tRNA synthetase, and decodes specifically UGA. Evolutionary analyses of known Sec tRNAs identify the C. reinhardtii form as the most diverged eukaryotic Sec tRNA[Ser]Sec and reveal a common origin for this tRNA in bacteria, archaea, and eukaryotes.  相似文献   

16.
17.
Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs.  相似文献   

18.
The molecular machinery for incorporating selenocysteine into proteins is present in both prokaryotes and eukaryotes. Although selenocysteine insertion has been reported in animals, plants, and protozoans, known eukaryotic selenocysteine tRNA sequences and selenocysteine insertion sequences are limited to animals and plants. Here we present clear indications of the presence of selenocysteine-tRNA and a selenocysteine insertion sequence in Plasmodium falciparum. To our knowledge, this is the first report of an identification of protozoan selenocysteine insertion machinery at the sequence level.  相似文献   

19.
Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5′ terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from the 3′ end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence -TΨCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or Ψ)CG-as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56–60%) than to eucaryotic cytoplasmic initiator tRNAs (45–51%).  相似文献   

20.
In the present study, modified nucleotides in the B. subtilis tRNA(Trp) cloned and hyperexpressed in E. coli have been identified by TLC and HPLC analyses. The modification patterns of the two isoacceptors of cloned B. subtilis tRNA(Trp) have been compared with those of native tRNA(Trp) from B. subtilis and from E. coli. The modifications of the A73 mutant of B. subtilis tRNA(Trp), which is inactive toward its cognate TrpRS, were also investigated. The results indicate the formation of the modified nucleotides S4U8, Gm18, D20, Cm32, i6A/ms2i6A37, T54 and psi 55 on cloned B. subtilis tRNA(Trp). This modification pattern resembles the pattern of E. coli tRNA(Trp), except that m7G is missing from the cloned tRNA(Trp), probably on account of its short extra loop. In contrast, the pattern departs substantially from that of native B. subtilis tRNA(Trp). Therefore, the cloned B. subtilis tRNA(Trp) has taken on largely the modification pattern of E. coli tRNA(Trp) despite the 26% sequence difference between the two species of tRNA, gaining in particular the Cm32 and Gm18 modifications from the E. coli host. A notable difference between the isoacceptors of the cloned tRNA(Trp) was seen in the extent of modification of A37, which occurred as either the hypomodified i6A or the hypermodified ms2i6A form. Surprisingly, base substitution of guanosine by adenosine at position 73 of the cloned tRNA(Trp) has led to the abolition of the 2'-O-methylation modification of the remote G18 residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号