首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate specificity of carnitine acetyltransferase   总被引:13,自引:12,他引:1       下载免费PDF全文
1. A study of the acyl group specificity of the carnitine acetyltransferase reaction [acyl-(-)carnitine+CoASH right harpoon over left harpoon (-)-carnitine+acyl-CoA] has been made with the enzyme from pigeon breast muscle. Acyl groups containing up to 10 carbon atoms are transferred and detailed kinetic investigations with a range of acyl-CoA and acylcarnitine substrates are reported. 2. Acyl-CoA derivatives with 12 or more carbon atoms in the acyl group are potent reversible inhibitors of carnitine acetyltransferase, competing with acetyl-CoA. Lauroyl- and myristoyl-CoA show a mixed inhibition with respect to (-)-carnitine, but palmitoyl-CoA competes strictly with this substrate also. Palmitoyl-dl-carnitine shows none of these effects. 3. Ammonium palmitate inhibits the enzyme competitively with respect to (-)-carnitine and non-competitively with respect to acetyl-CoA. 4. It is suggested that a hydrophobic site exists on the carnitine acetyltransferase molecule. The hydrocarbon chain of an acyl-CoA derivative containing eight or more carbon atoms in the acyl group may interact with this, which results in enhanced acyl-CoA binding. Competition occurs between ligands bound to this hydrophobic site and the carnitine binding site. 5. The possible physiological significance of long-chain acyl-CoA inhibition of this enzyme is discussed.  相似文献   

2.
Abstract— The synthesis of ACh by choline acetyltransferase (ChAc) has been examined using acetyl-CoA, acetyl-dephospho-CoA and acetylpantetheine phosphate. At pH 7.5 Km values of 25.7 μ m for acetyl-CoA, 54.8 μ m for acetyl-dephospho-CoA and 382 μ m for acetylpantetheine phosphate were obtained and are similar to those at pH 6.0. This indicates that the 3-phosphate may not be required for binding the substrate to the enzyme unlike carnitine acetyltransferase.
Inhibitor constants ( Ki ) for CoA, dephospho-CoA and pantetheine phosphate were also measured and when considered with the Km values obtained for the acetyl derivatives it is concluded that acetyl-dephospho-CoA could be a successful acetyl donor in the synthesis of ACh.
Acetyl-dephospho-CoA was found to be less satisfactory as a substrate for citrate synthase.  相似文献   

3.
1. Carnitine acetyltransferase is very rapidly inhibited in the presence of bromoacetyl-(-)-carnitine plus CoA or of bromoacetyl-CoA plus (-)-carnitine. 2. Under appropriate conditions, the enzyme may be titrated with either bromoacetyl substrate analogue; in each case about 1mole of inhibitor is required to inactivate completely 1mole of enzyme of molecular weight 58000+/-3000. 3. Inhibition by bromoacetyl-CoA plus (-)-carnitine results in the formation of an inactive enzyme species, containing stoicheiometric amounts of bound adenine nucleotide and (-)-carnitine in a form that is not removed by gel filtration. This is shown to be S-carboxymethyl-CoA (-)-carnitine ester. 4. The inhibited enzyme recovers activity slowly on prolonged standing at 4 degrees . 5. Incubation with S-carboxymethyl-CoA (-)-carnitine ester causes a slow inhibition of carnitine acetyltransferase. 6. The formation of bound S-carboxymethyl-CoA (-)-carnitine ester by the enzyme is discussed. Presumably the resulting inhibition reflects binding of the ester to both the CoA- and carnitine-binding sites on the enzyme and its consequent very slow dissociation. These observations confirm that carnitine acetyltransferase can form ternary enzyme-substrate complexes; this also appears to be the case with carnitine palmitoyltransferase and choline acetyltransferase.  相似文献   

4.
1. The optical rotatory dispersion of carnitine acetyltransferase is altered in the presence of l-carnitine or acetyl-l-carnitine. These changes, which include an increase in the reduced mean residue rotation at 233nm. ([M'](233)), suggest that substrate binding causes the enzyme to unfold. 2. CoA and acetyl-CoA have no immediate effect on [M'](233) and CoA has no effect on the change in this parameter induced by l-carnitine. 3. The change in [M'](233) was used as a measure of the degree of saturation of the enzyme with carnitine substrates. Dissociation constants for the enzyme complexes with l-carnitine, d-carnitine and acetyl-l-carnitine were determined in this way. 4. Prolonged incubation of carnitine acetyltransferase in the presence of CoA leads to a small increase in the value of [M'](233) accompanied by irreversible inhibition of the enzyme. 5. Optical-rotatory-dispersion studies of two specifically inhibited enzyme forms are reported.  相似文献   

5.
Analogues of coenzyme A (CoA) and of CoA thioesters have been prepared in which the amide bond nearest the thiol group has been modified. An analogue of acetyl-CoA in which this amide bond is replaced with an ester linkage was a good substrate for the enzymes carnitine acetyltransferase, chloramphenicol acetyltransferase, and citrate synthase, with K(m) values 2- to 8-fold higher than those of acetyl-CoA and V(max) values from 14 to >80% those of the natural substrate. An analogue in which an extra methylene group was inserted between the amide bond and the thiol group showed less than 4-fold diminished binding to the three enzymes but exhibited less than 1% activity relative to acetyl-CoA with carnitine acetyltransferase and no measurable activity with the other two enzymes. Analogues of several CoA thioesters in which the amide bond was replaced with a hemithioacetal linkage exhibited no measurable activity with the appropriate enzymes. The results indicate that some aspects of the amide bond and proper distance between this amide and the thiol/thioester moiety are critical for activity of CoA ester-utilizing enzymes.  相似文献   

6.
1. Michaelis constants for substrates of carnitine acetyltransferase have been shown to be independent of the concentration of second substrate present. This applies to the forward reaction between acetyl-l-carnitine and CoASH, and to the back reaction between l-carnitine and acetyl-CoA. 2. Product inhibition of both forward and back reactions has been studied. Evidence has been obtained for independent binding sites for l-carnitine and CoASH. Acetyl groups attached to either substrate occupy overlapping positions in space when the substrates are bound to the enzyme. 3. Possible reaction mechanisms involving the ordered addition of substrates have been excluded by determining kinetic constants in the presence and absence of added product. 4. d-Carnitine and acetyl-d-carnitine have been shown to inhibit competitively with respect to l-carnitine and acetyl-l-carnitine. 5. It is concluded that the mechanism of action of carnitine acetyltransferase involves four binary and two or more ternary enzyme complexes in rapid equilibrium with free substrates, the interconversion of the ternary complexes being the rate-limiting step. The possible intermediate formation of an acetyl-enzyme cannot be excluded, but this could only arise from a ternary complex.  相似文献   

7.
Carnitine acetyltransferase was isolated from yeast Saccharomyces cerevisiae with an apparent molecular weight of 400,000. The enzyme contains identical subunits of 65,000 Da. The Km values of the isolated enzyme for acetyl-CoA and for carnitine were 17.7 microM and 180 microM, respectively. Carnitine acetyltransferase is an inducible enzyme, a 15-fold increase in the enzyme activity was found when the cells were grown on glycerol instead of glucose. Carnitine acetyltransferase, similarly to citrate synthase, has a double localization (approx. 80% of the enzyme is mitochondrial), while acetyl-CoA synthetase was found only in the cytosol. In the mitochondria carnitine acetyltransferase is located in the matrix space. The incorporation of 14C into CO2 and in lipids showed a similar ratio, 2.9 and 2.6, when the substrate was [1-14C]acetate and [1-14C]acetylcarnitine, respectively. Based on these results carnitine acetyltransferase can be considered as an enzyme necessary for acetate metabolism by transporting the activated acetyl group from the cytosol into the mitochondrial matrix.  相似文献   

8.
Arylamine acetyltransferase (EC 2.3.1.5) was purified 120-fold from chicken liver. The enzyme showed a rise in activity from pH 6.5 to 7.7 followed by a constant activity to about pH 8.6. The relative molecular weight of the enzyme was about 34,000. The apparent Km for acetyl-CoA was 13 microM with 4-nitroaniline as acetyl-acceptor. CoA was a noncompetitive inhibitor relative to acetyl-CoA with apparent Ki value of 110 microM. With 4-methylaniline as substrate, arylamine acetyltransferase activity in pigeon liver was about 8 times greater than in chicken liver, and about 40 times greater than in rabbit.  相似文献   

9.
Acetyl-l-carnitine as a precursor of acetylcholine   总被引:2,自引:0,他引:2  
Synthesis of [3H]acetylcholine from [3H]acetyl-l-carnitine was demonstrated in vitro by coupling the enzyme systems choline acetyltransferase and carnitine acetyltransferase. Likewise, both [3H] and [14C] labeled acetylcholine were produced when [3H]acetyl-l-carnitine andd-[U-14C] glucose were incubated with synaptosomal membrane preparations from rat brain. Transfer of the acetyl moiety from acetyl-l-carnitine to acetylcholine was dependent on concentration of acetyl-l-carnitine and required the presence of coenzyme A, which is normally produced as an inhibitory product of choline acetyltransferase. These results provide further evidence for a role of mitochondrial carnitine acetyltransferase in facilitating transfer of acetyl groups across mitochondrial membranes, thus regulating the availability in the cytoplasm of acetyl-CoA, a substrate of choline acetyltransferase. They are also consistent with a possible utility of acetyl-l-carnitine in the treatment of age-related cholinergic deficits.  相似文献   

10.
To investigate why Rhizobium sp. (Cicer) strain CC 1192 cells accumulate poly-R-3-hydroxybutyrate in the free-living state but not as bacteroids in nodules on chickpea (Cicer arietinum L.) plants, we have examined the kinetic properties of acetyl coenzyme A (acetyl-CoA) acetyltransferase (also known as acetoacetyl-CoA thiolase and 3-ketothiolase [EC 2.3.1.9]) from both types of cells. The enzyme had a native molecular mass of 180 (plusmn) 4 kDa, and the subunit molecular mass was 44 (plusmn) 1 kDa. The seven amino acids from the N terminus were Lys-Ala-Ser-Ile-Val-Ile-Ala. Thiolysis and condensation activity of the enzyme from free-living CC 1192 cells were optimal at pHs 7.8 and 8.1, respectively. The relationship between substrate concentrations and initial velocity for the thiolysis reaction were hyperbolic and gave K(infm) values for acetoacetyl-CoA and CoA of 42 and 56 (mu)M, respectively. The maximum velocity in the condensation direction was approximately 10% of that of the thiolysis reaction. With highly purified preparations of the enzyme, a value of approximately 1 mM was determined for the apparent K(infm) for acetyl-CoA. However, with partially purified enzyme preparations or when N-ethylmaleimide was included in reaction mixtures the apparent K(infm) for acetyl-CoA was close to 0.3 mM. In the condensation direction, CoA was a potent linear competitive inhibitor with an inhibition constant of 11 (mu)M. The much higher affinity of the enzyme for the product CoA than the substrate acetyl-CoA could have significance in view of metabolic differences between bacteroid and free-living cells of CC 1192. We propose that in free-living CC 1192 cells, the acetyl-CoA/CoA ratio reaches a value that allows condensation activity of acetyl-CoA acetyltransferase, but that in CC 1192 bacteroids, the ratio is poised so that the formation of acetoacetyl-CoA is not favored.  相似文献   

11.
An acyl coenzyme A (CoA) carboxylase, which catalyzes the adenosine triphosphate-dependent fixation of CO2 into acetyl-, propionyl-, and butyryl-CoA, was detected in fractionated cell extracts of Propionibacterium shermanii. Catalytic activity was inhibited by avidin but was unaffected by avidin pretreated with excess biotin. The carboxylase levels detected were relatively small and were related to cellular growth. Maximal carboxylase activity was detected in cells grown for about 96 h. Thereafter, the activity declined rapidly. Optimal CO2 fixation occurred at pH 7.5. Other parameters of the assay system were optimized, and the apparent Km values for substrates were determined. The end product of the reaction (with acetyl-CoA as the substrate) was identified as malonyl-CoA. The stoichiometry of the reaction was such that, for every mole of acetyl-CoA and adenosine triphosphate consumed, 1 mol each of malonyl-CoA, adenosine diphosphate, and orthophosphate was formed. These data provide the first evidence for the presence of another biotin-containing enzyme, an acyl-CoA carboxylase, in these bacteria in addition to the well-characterized methylmalonyl-CoA carboxyltransferase.  相似文献   

12.
Carnitine acyltransferase activities for acetyl- and octanoyl-CoA (coenzyme A) occur in isolated peroxisomal, mitochondrial, and microsomal fractions from rat and pig liver. Solubility studies indicated that both peroxisomal carnitine acyltransferases were in the soluble matrix. In contrast, the microsomal carnitine acyltransferases were tightly associated with their membrane. The microsomal short-chain transferase, carnitine acetyltransferase, was solubilized and stabilized by extensive treatment of the membrane with 0.4 m KCl or 0.3 m sucrose in 0.1 m pyrophosphate at pH 7.5. The same treatment only partially solubilized the microsomal medium-chain transferase, carnitine octanoyltransferase.Although half of the total carnitine acetyltransferase activity in rat liver resides in peroxisomes and microsomes, previous reports have only investigated the mitochondrial activity. Transferase activity for acetyl- and octanoyl-CoA were about equal in peroxisomal and in microsomal fractions. A 200-fold purification of peroxisomal and microsomal carnitine acetyltransferases was achieved using O-(diethylaminoethyl)-cellulose and cellulose phosphate chromatography. This short-chain transferase preparation contained less than 5% as much carnitine octanoyltransferase and acyl-CoA deacylase activities. This fact, plus differences in solubility and stability of the microsomal transferase system for acetyl- and octanoyl-CoA indicate the existence of two separate enzymes: a carnitine acetyltransferase and a carnitine octanoyltransferase in peroxisomes and in microsomes.Peroxisomal and microsomal carnitine acetyltransferases had similar properties and could be the same protein. They showed identical chromatographic behavior and had the same pH activity profiles and major isoelectric points. They also had the same apparent molecular weight by gel filtration (59,000) and the same relative velocities and Km values for several short-chain acyl-CoA substrates. Both were active with propionyl-, acetyl-, malonyl-, and acetyacetyl-CoA, but not with succinyl- and β-hydroxy-β-methylglutaryl-CoA as substrates.  相似文献   

13.
Acetylcarnitine was rapidly oxidised by pea mitochondria. (-)-carnitine was an essential addition for the oxidation of acetate or acetyl CoA. When acetate was sole substrate, ATP and Mg2+ were also essential additives for maximum oxidation. CoASH additions inhibited the oxidation of acetate, acetyl CoA and acetylcarnitine. It was shown that CoASH was acting as a competitive inhibitor of the carnitine stimulated O2 uptake. It is suggested that acetylcarnitine and carnitine passed through the mitochondrial membrane barrier with ease but acetyl CoA and CoA did not. Carnitine may also buffer the extra- and intra-mitochondrial pools of CoA. The presence of carnitine acetyltransferase (EC 2.3.1.7) on the pea mitochondria is inferred.  相似文献   

14.
The aim of this work was to understand the steps controlling the process of biotransformation of trimethylamonium compounds into L(-)-carnitine by Escherichia coli and the link between the central carbon or primary and the secondary metabolism expressed. Thus, the enzyme activities involved in the biotransformation process of crotonobetaine into L(-)-carnitine (crotonobetaine hydration reaction and crotonobetaine reduction reaction), in the synthesis of acetyl-CoA (pyruvate dehydrogenase, acetyl-CoA synthetase, and ATP:acetate phosphotransferase) and in the distribution of metabolites for the tricarboxylic acid (isocitrate dehydrogenase) and glyoxylate (isocitrate lyase) cycles, were followed in batch with both growing and resting cells and during continuous cell growth in stirred-tank and high-cell-density membrane reactors. In addition, the levels of carnitine, crotonobetaine, gamma-butyrobetaine, ATP, NADH/NAD(+), and acetyl-CoA/CoA ratios were measured to determine how metabolic fluxes were distributed in the catabolic system. The results provide the first experimental evidence demonstrating the important role of the glyoxylate shunt during biotransformation of resting cells and the need for high levels of ATP to maintain metabolite transport and biotransformation (2.1 to 16.0 mmol L cellular/mmol ATP L reactor h). Moreover, the results obtained for the pool of acetyl-CoA/CoA indicate that it also correlated with the biotransformation process. The main metabolic pathway operating during cell growth in the high cell-density membrane reactor was that related to isocitrate dehydrogenase (during start-up) and isocitrate lyase (during steady-state operation), together with phosphotransacetylase and acetyl-CoA synthetase. More importantly, the link between central carbon and L(-)-carnitine metabolism at the level of the ATP pool was also confirmed.  相似文献   

15.
1. The effect of independent variation of both acetyl-CoA and acetoacetyl-CoA on the initial velocity at pH8.0 and pH8.9 gives results compatible with a sequential mechanism involving a modified enzyme tentatively identified as an acetyl-enzyme, resulting from the reaction with acetyl-CoA in the first step of a Ping Pong (Cleland, 1963a) reaction. 2. Acetoacetyl-CoA gives marked substrate inhibition that is competitive with acetyl-CoA. This suggests formation of a dead-end complex with the unacetylated enzyme and is in accord with the inhibition pattern given by 3-oxohexanoyl-CoA, an inactive analogue of acetoacetyl-CoA. 3. The inhibition pattern given by products of the reaction is compatible with the above mechanism. CoA gives mixed inhibition with respect to both substrates, whereas dl-3-hydroxy-3-methylglutaryl-CoA competes with acetyl-CoA but gives uncompetitive inhibition with respect to acetoacetyl-CoA. 4. 3-Hydroxy-3-methylglutaryl-CoA analogues lacking the 3-hydroxyl group are found to compete, like 3-hydroxy-3-methylglutaryl-CoA, with acetyl-CoA but have K(i) values ninefold higher, indicating the importance of the 3-hydroxyl group in the interaction. 5. A comparison of inhibition by CoA and desulpho-CoA at pH8.0 and pH8.9 shows that at the higher pH value a kinetically significant reversal of the formation of acetyl-enzyme can occur. 6. Acetyl-CoA homologues do not act as substrates and compete only with acetyl-CoA. A study of the variation of K(i) with acyl-chain length suggests the presence near the active centre of a hydrophobic region. 7. These results are discussed in terms of a kinetic mechanism in which there is only one CoA-binding site the specificity of which is altered by acetylation of the enzyme. 8. The rate of 3-hydroxy-3-methylglutaryl-CoA synthesis in yeast is calculated from the kinetic constants determined for purified 3-hydroxy-3-methylglutaryl-CoA synthase and from estimates of the physiological substrate concentrations. The rate of synthesis of 12nmol of 3-hydroxy-3-methylglutaryl-CoA/min per g wet wt. of yeast is still greater than the rate of utilization in spite of the extremely low (calculated) acetoacetyl-CoA concentration (1.8nm).  相似文献   

16.
The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [3H]CoA were found to produce acetyl-[3H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [3H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [3H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate.  相似文献   

17.
In adult F. hepatica pyruvate is decarboxylated via pyruvate dehydrogenase to acetyl-CoA; acetyl-CoA is then cleaved to acetate via three possible mechanisms (1) carnitine dependent hydrolysis, (2) CoA transferase, (3) reversal of a GTP dependent acyl-CoA synthetase. Of these three systems, CoA transferase has by far the greatest activity. Propionate production by F. hepatica is similar to the mammalian system, succinate being metabolized via succinic thiokinase, methylmalonyl-CoA isomerase, methyl-malonyl-CoA racemase and propionyl-CoA carboxylase to propionyl-CoA. Propionyl-CoA is then cleaved to propionate by the same three pathways as acetyl-CoA. No ATP or GTP production could be demonstrated when acetyl- or propionyl-CoA were incubated with homogenates of F. hepatica. This indicates that carnitine dependent hydrolysis or CoA transferase are the major pathways of acetyl- or propionyl-CoA breakdown. The CoA transferase reaction would result in the conservation of the bond energy although there is no net ATP synthesis.  相似文献   

18.
Activities of five enzymes (pyruvate dehydrogenase complex; citrate synthase, EC 4.1.3.7; carnitine acetyltransferase, EC 2.3.1.7; acetyl-CoA synthetase, EC 6.2.1.1; and ATP citrate lyase, EC 4.1.3.8) were determined in cell bodies of anterior horn cells and dorsal root ganglion cells from the rabbit. For comparison, molecular layer, granular layer and white matter from rabbit and mouse cerebella and cerebral cortex and striatum from the mouse were analyzed. Samples (3–85 ng dry weight) were assayed in 180 to 370 ml of assay reagents containing CoASH and other substrates in excess. By using ‘CoA cycling’, the assay systems were devised to amplify and measure small amounts of acetyl-CoA formed during the enzyme reactions. Carnitine acetyltransferase was the most active enzyme in single nerve cell bodies and all layer samples, except for rabbit and mouse cerebellar white matter. Citrate synthetase was the lowest in single cell bodies. The activities of carnitine acetyltransferase and acetyl-CoA synthetase (656 and 89.8 mmoles of acetyl-CoA formed/kg of dry weight/h at 38°C) from dorsal root ganglion cells were about 2-fold higher than those from anterior horn cells. The activity of ATP citrate lyase (134mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) from anterior horn cells was approximately twice that from dorsal root ganglion cells. The activity of this enzyme was distributed in a wider range in anterior horn cells than dorsal root ganglion cells. The second highest activity (80.0 mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) of ATP citrate lyase was found in striatum where cholinergic interneurones are abundant. Relatively higher activities of this enzyme were found in cerebellar granular layer and white matter which are known to contain the cholinergic mossy fibers. These results suggested that cholinergic neurones contain higher activity of ATP citrate lyase which is thought to supply acetyl-CoA to choline acetyltransferase (EC 2.3.1.6) as a substrate to form acetylcholine.  相似文献   

19.
Rat liver spermidine/spermine N1-acetyltransferase was found to be strongly inhibited by the dyes Cibacron F3GA, Coomassie Brilliant Blue and Congo Red. Inhibition was competitive with respect to acetyl-CoA and Ki values of 0.7 microM and 52 microM were determined for Cibacron F3GA and Coomassie Brilliant Blue respectively. The enzyme was strongly retained by columns of Affi-Gel Blue, which contains Cibacron F3GA linked to agarose. It was not eluted from this adsorbent in the presence of 10 mM-spermidine/0.5 M-NaCl/50 mM-Tris/HCl, pH 7.5, but was released by 1 mM-CoA in 10 mM-spermidine/50 mM-Tris/HCl, pH 7.5. These results are consistent with the presence in the enzyme of a dinucleotide fold that binds acetyl CoA and has a high affinity for Cibacron F3GA. The spermidine/spermine N1-acetyltransferase was irreversibly inactivated by exposure to butane-2,3-dione in sodium borate, pH 7.8, or by exposure to phenylglyoxal or camphorquinone-10-sulphonic acid. All of these reagents are known to interact with arginine residues in proteins under the conditions in which they inactivated the acetyltransferase. Inactivation was prevented by the presence of acetyl-CoA or CoA, but to a lesser extent by 3'-dephospho-CoA and not at all by NAD or adenosine. This protection suggests that an arginine residue at the active site is involved in the binding of the acetyl-CoA substrate. Treatment of the assay mixture but not the spermidine N1-acetyltransferase with alkaline phosphatase prevented the reaction taking place. This suggests that the apparent loss of enzyme activity in response to alkaline phosphatase reported by Matsui, Otani, Kamei & Morisawa [(1982) FEBS Lett. 150, 211-213] is due to dephosphorylation of the acetyl-CoA substrate and that the 3'-phosphate group is essential for activity.  相似文献   

20.
The mechanism of the enzymic reaction responsible for chloramphenicol resistance in bacteria was examined by steady-state kinetic methods. The forward reaction catalysed by chloramphenicol acetyltransferase leads to inactivation of the antibiotic. Use of alternative acyl donors and acceptors, as well as the natural substrates, has yielded data that favour the view that the reaction proceeds to the formation of a ternary complex by a rapid-equilibrium mechanism wherein the addition of substrates may be random but a preference for acetyl-CoA as the leading substrate can be detected. Chloramphenicol and acetyl-CoA bind independently, but the correlation between directly determined and kinetically derived dissociation constants is imperfect because of an unreliable slope term in the rate equation. The reverse reaction, yielding acetyl-CoA and chloramphenicol, was studied in a coupled assay involving citrate synthase and malate dehydrogenase, and is best described by a rapid-equilibrium mechanism with random addition of substrates. The directly determined dissociation constant for CoA is in agreement with that derived from kinetic measurements under the assumption of an independent-sites model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号