首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The entire coding sequence of the tonB gene, except for nine codons at the 3′ end, was deleted from the chromosome of Escherichia coli. Introduction of the btuB451 suppressor mutant tonB1 into the chromosome of such a tonB deletion strain showed that the tonB1 allele was active as a suppressor in a single copy at 37° C and 42° C but not at 28° C. No temperature dependence was seen when FepA- or FhuA-dependent activities of the tonB1 gene product (TonBQ160K) were tested. The btuB451 suppressor activity of tonB1 was inhibited by the simultaneous presence within the cells of the tonB + allele on a multicopy plasmid. This represents the first case of dominance among different tonB alleles. Inhibition of suppression was abolished by overexpression of the btuB451-encoded receptor protein. Competition for binding of TonB+ and TonBQ150K to ExbB was excluded as the cause of dominance. Based on our data we conclude that competition for binding of TonB + and TonBQ160K to the btuB451 gene product is the reason for the observed dominance. The implications of these findings for the mechanism of btuB451 suppression by tonB1 are discussed.  相似文献   

2.
Glutathionylcobalamin (GSCbl) is a biologically relevant vitamin B12 derivative and contains glutathione as the upper axial ligand thought formation of a cobalt-sulfur bond. GSCbl has been shown to be an effective precursor of enzyme cofactors, however processing of the cobalamin in intracellular B12 metabolism has not been fully elucidated. In this study, we discovered that bCblC, a bovine B12 trafficking chaperone, catalyzes elimination of the glutathione ligand from GSCbl by using the reduced form of glutathione (GSH). Deglutathionylation products are base-off cob(II)alamin and glutathione disulfide, which are generated stoichiometrically to GSH. Although cob(I)alamin was not detected due to its instability, deglutathionylation is likely analogous to dealkylation of alkylcobalamins, which uses the thiolate of GSH for nucleophilic displacement. The catalytic turnover number for the deglutathionylation of GSCbl is ?1.62 ± 0.13 min−1, which is, at least, an order of magnitude higher than that for elimination of upper axial ligands from other cobalamins. Considering the prevalence of GSH at millimolar concentrations in cells, our results explain the previous finding that GSCbl is more effective than other cobalamins for synthesis of enzyme cofactors.  相似文献   

3.
Cytochrome b5 (b5) has been shown to modulate many cytochrome P450 (CYP)-dependent reactions. In order to elucidate the mechanism of such modulations, it is necessary to evaluate not only the effect of native b5 on CYP-catalyzed reactions, but also that of the apo-cytochrome b5 (apo-b5). Therefore, the apo-b5 protein was prepared using a heterologous expression in Escherichia coli. The gene for rabbit b5 was constructed from synthetic oligonucleotides using polymerase chain reaction (PCR), cloned into pUC19 plasmid and amplified in DH5α cells. The gene sequence was verified by DNA sequencing. The sequence coding b5 was cleaved from pUC19 by NdeI and XhoI restriction endonucleases and subcloned to the expression vector pET22b. This vector was used to transform E. coli BL-21 (DE3) Gold cells by heat shock. Expression of b5 was induced with isopropyl β-d-1-thiogalactopyranoside (IPTG). The b5 protein, produced predominantly in its apo-form, was purified from isolated membranes of E. coli cells by chromatography on a column of DEAE–Sepharose. Using such procedures, the homogenous preparation of apo-b5 protein was obtained. Oxidized and reduced forms of the apo-b5 reconstituted with heme exhibit the same absorbance spectra as native b5. The prepared recombinant apo-b5 reconstituted with heme can be reduced by NADPH:CYP reductase. The reconstituted apo-b5 is also fully biologically active, exhibiting the comparable stimulation effect on the CYP3A4 enzymatic activity towards oxidation of 1-phenylazo-2-hydroxynaphthalene (Sudan I) as native rabbit and human b5.  相似文献   

4.
从包含牛流行热病毒G蛋白基因的质粒pMD-G中克隆G1抗原表位区基因,与表达载体pGEX-4T-1连接,成功构建重组质粒pGEX-G1。重组质粒转化BL21(DE3),以IPTG进行诱导,并确定了最佳表达条件的IPTG浓度为0.1mmol/L、反应温度为16℃、诱导时间为18h。可溶性表达的目的蛋白经Glutathione Sepharose TM4B介质纯化,纯度达80%;以包涵体形式存在的重组蛋白以2%的脱氧胆酸钠洗涤、0.5%的N-十二烷基肌氨酸钠溶解、透析复性、Glutathione Sepharose TM4B纯化后,纯度达85%以上。Western blot试验表明纯化的目的蛋白有良好的反应原性。经间接ELISA检测,测得牛流行热病毒12份阳性血清的OD490值平均为1.813±0.231,12份阴性血清的OD490值平均为0.359±0.032,差异极显著(P<0.01)。将重组蛋白作为抗原免疫兔子,试验兔均产生了高滴度的抗体,证实该蛋白有免疫原性。将目的蛋白作为包被抗原,测得8份狂犬病病毒阳性血清的OD490值平均为0.324±0.031,与所测12份阴性血清的OD490值接近,说明不存在交叉反应。以上结果均证实纯化后的重组蛋白有良好的生物学活性和特异性,可作为包被抗原,开发ELISA试剂盒。  相似文献   

5.
Summary A thermosensitive (ts) parA mutant, MFT110, of Escherichia coli carried at least two ts mutations. The major ts defect, resulting from a mutation mapped originally at 95 min and complemented by pLC8-47, was most probably due to psd. A plasmid carrying the 1.6 kb BamHI-PvuII fragment recloned from pLC8-47 complemented the major ts mutation in MFT110 and psd(ts) in two mutants, but did not correct the Par phenotype of MFT110. The second ts mutation was salt-repairable and mapped at 83 min close to recF and tnaA. This mutation was linked with the Par phenotype as shown unambiguously by 4,6-diamidino-2-phenylindole stained nucleoids in parA mutant cells with the W3110 genetic background. Both salt-repairable ts and Par traits were corrected concomitantly by a plasmid carrying the chromosomal region solely for the gyrB gene. This strongly suggests that parA is an allele of gyrB.  相似文献   

6.
An Escherichia coli membrane protein, FtsH, has been implicated in several cellular processes, including integration of membrane proteins, translocation of secreted proteins, and degradation of some unstable proteins. However, how it takes part in such diverse cellular events is largely unknown. We previously isolated dominant negative ftsH mutations and proposed that FtsH functions in association with some other cellular factor(s). To test this proposal we isolated multicopy suppressors of dominant negative ftsH mutations. One of the multicopy suppressor clones contained an N-terminally truncated version of a new gene that was designated fdrA. The FdrA fragment suppressed both of the phenotypes — increased abnormal translocation of a normally cytoplasmic domain of a model membrane protein and retardation of protein export — caused by dominant negative FtsH proteins. The intact fdrA gene (11.9 min on the chromosome) directed the synthesis of a 60 kDa protein in vitro.  相似文献   

7.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

8.
9.
Intracellular B12 metabolism involves a B12 trafficking chaperone CblC that is well conserved in mammals including human. The protein CblC is known to bind cyanocobalamin (CNCbl, vitamin B12) inducing the base-off transition and convert it into an intermediate that can be used in enzyme cofactor synthesis. The binding affinity of human CblC for CNCbl was determined to be Kd = ≈6–16 μM, which is relatively low considering sub-micromolar B12 concentrations (0.03–0.7 μM) in normal cells. In the current study, we discovered that the base-off transition of CNCbl upon binding to bCblC, a bovine homolog of human CblC, is facilitated in the presence of reduced form of glutathione (GSH). In addition, GSH dramatically increases the binding affinity for CNCbl lowering the Kd from 27.1 ± 0.2–0.24 ± 0.09 μM. The effect of GSH is due to conformational change of bCblC upon binding with GSH, which was indicated by limited proteolysis and urea-induced equilibrium denaturation of the protein. The results of this study suggest that GSH positively modulates bCblC by increasing the binding affinity for CNCbl, which would enhance functional efficiency of the protein.  相似文献   

10.
Mycobacterium tuberculosis, the causative agent of tuberculosis, may remain dormant within its host for many years. The nature of this dormant or latent state is not known, but it may be a specialized form of the stationary growth phase. In Escherichia coli, KatF (or RpoS) is the major stationary phase sigma factor regulating an array of genes expressed in this phase of growth. A potential M. tuberculosis katF homologue was cloned using a fragment of the E. coli katF gene as a probe. DNA sequence analysis of a resultant clone showed 100% identity to a fragment of DNA encoding the M. tuberculosis mysA and mysB genes. Overexpression of mysB in M. bovis BCG resulted in an increase in katG mRNA and catalase and peroxidase activity, and an increase in sensitivity of the cells to isoniazid. An increase in katG promoter activity from a reporter vector was demonstrated when mysB was overexpressed from the same plasmid, indicating a direct relationship between MysB and katG expression.  相似文献   

11.
gdhA1 is a spontaneous mutant of Escherichia coli that causes complete loss of activity of the NADP-specific glutamate dehydrogenase (GDH) encoded by the gdhA gene. The gdhA1 mutational site has been identified by recombinational mapping, polymerase chain reaction (PCR) amplification and DNA sequencing, as an A to G transition at nucleotide 274 of the gdhA coding sequence, resulting in an amino acid change of lysine 92 to glutamic acid. The mutant enzyme forms hybrid hexamers with a wild-type GDH, providing a useful system for analysis of conformational integrity of mutational variants.  相似文献   

12.
Summary A cDNA sequence homologous to the Brassica self-incompatibility locus specific glycoprotein (SLSG) sequence was isolated from stigmas of B. oleracea plants homozygous for the S5 allele. The nucleotide sequence of this cDNA was obtained and compared with the S6 allelic form of the SLSG. Evidence is presented which indicates that this sequence does not specify the self-incompatibility response of pollen.Abbreviations SDS sodium dodecyl sulphate - PVP polyvinylpyrrolidone - BSA bovine serum albumin - SLSG self-incompatibility locus specific glycoprotein  相似文献   

13.
A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.  相似文献   

14.
15.
The fragile histidine triad (Fhit) protein is a homodimeric protein with diadenosine 5′,5-P1,P3-triphosphate (Ap3A) asymmetrical hydrolase activity. We have cloned the human cDNA Fhit in the pPROEX-1 vector and expressed with high yield in Escherichia coli with the sequence Met-Gly-His6-Asp-Tyr-Asp-Ile-Pro-Thr-Thr followed by a rTEV protease cleavage site, denoted as “H6TV,” fused to the N-terminus of Fhit. Expression of H6TV–Fhit in BL21(DE3) cells for 3 h at 37°C produced 30 mg of H6TV–Fhit from 1 L of cell culture (4 g of cells). The H6TV–Fhit protein was purified to homogeneity in a single step, with a yield of 80%, using nickel-nitrilotriacetate resin and imidazole buffer as eluting agent. Incubation of H6TV–Fhit with rTEV protease at 4°C for 24 h resulted in complete cleavage of the H6TV peptide. There were no unspecific cleavage products. The purified Fhit protein could be stored for 3 weeks at 4°C without loss of activity. The pure protein was stable at −20°C for at least 18 months when stored in buffer containing 25% glycerol. Purified Fhit was highly active, with a Km value for Ap3A of 0.9 μM and a kcat(monomer) value of 7.2 ± 1.6 s−1 (n = 5). The catalytic properties of unconjugated Fhit protein and the H6TV–Fhit fusion protein were essentially identical. This indicates that the 24-amino-acid peptide containing the six histidines fused to the N-terminus of Fhit does not interfere in forming the active homodimers or in the binding of Ap3A.  相似文献   

16.
Summary The rnh gene of Escherichia coli encodes RNase H. rnh mutants display at least two phenotypes: (1) they require functional RecBCD enzyme for growth; thus rnh-339::cat recB270 (Ts) and rnh-339::cat recC271 (Ts) strains are temperature sensitive for growth; (2) rnh mutants permit replication that is independent of the chromosomal origin, presumably by failing to remove RNA-DNA hybrids from which extra-original replication can be primed. We report here that manifestation of these two phenotypes occurs at different levels of RNase H function; we have examined partially functional rnh mutants for their in vitro RNase H activity, their ability to rescue viability in recB or recC cells and their ability to permit growth of mutants incapable of using oriC [dnaA (Ts)].  相似文献   

17.
A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.  相似文献   

18.

Background

Since 1975 cells lines from patients with suspected inborn errors of vitamin B12 metabolism have been referred to our laboratory because of elevations of homocysteine, methylmalonic acid, or both.

Design

Cultured fibroblasts from patients were subjected to a battery of tests: incorporation of labelled propionate and methyltetrahydrofolate into cellular macromolecules, to test the functional integrity of methylmalonyl-CoA mutase and methionine synthase, respectively; uptake of labelled cyanocobalamin and synthesis of adenosylcobalamin and methylcobalamin; and, where applicable, complementation analysis.

Results

This approach has allowed for the discovery of novel steps in the cellular transport and metabolism of vitamin B12, including those involving cellular uptake, the efflux of vitamin B12 from lysosomes, and the synthesis of adenosylcobalamin and methylcobalamin. For all of these disorders, the responsible genes have been discovered.

Conclusion

The study of highly selected patients with suspected inborn errors of metabolism has consistently resulted in the discovery of previously unknown metabolic steps and has provided new lessons in biology.  相似文献   

19.
20.
[目的]为了实现对大肠杆菌靶基因的点突变,本研究将同源重组系统与CRISPR-Cas9技术相结合,探索一种高效、简捷的两步法策略.[方法]将靶基因的上下游同源臂和标记基因(amp)与pKOV质粒连接,获得pKOV-HR重组质粒.将pKOV-HR转化至大肠杆菌,借助其自身RecA重组系统,介导DNA发生同源重组,获得靶基...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号