首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorella cells were shown to have similar fatty acid profiles when grown photoautotrophically or if grown photoheterotrophically with ethanoate (acetate) as carbon source. When supplied with ethanoate labelled with carbon-13 in the methyl group, the alga incorporated it into fatty acids with retention of the sequence of labelling on alternate carbon atoms, thus providing a convenient method for synthesising lipids in a form useful for nuclear magnetic resonance (NMR) studies of lipids in situ in membranes. Marine algae used in fish farming may have higher levels of very highly unsaturated fatty acids; proposals for producing these compounds labelled with carbon-13 are, therefore, presented, based on using centrally labelled glycerol. The scope for producing other substances labelled in a form suitable for NMR studies, such as carotenoids, is discussed.  相似文献   

2.
Placental fatty acid transfer in humans in vivo was studied using stable isotopes. Four pregnant women undergoing cesarean section received 4 h before delivery an oral dose of [(13)C]palmitic acid (PA), [(13)C]oleic acid (OA), [(13)C]linoleic acid (LA), and [(13)C]docosahexaenoic acid (DHA). Maternal blood samples were collected at -4 h (basal), -3 h, -2 h, -1 h, 0 h, and +1 h relative to time of cesarean section. At the time of birth, venous cord blood and placental tissue were collected. Fatty acid composition was determined by gas-liquid chromatography and isotopic enrichment by gas chromatography-combustion-isotope ratio mass spectrometry. (13)C-enrichment of fatty acids in the nonesterified fatty acids (NEFA) of cord plasma tended to be higher than in NEFA of placenta, with statistically significant differences for the nonesterified OA and DHA ([(13)C]PA, 0.024 +/- 0.011 vs. 0.001 +/- 0.001; [(13)C]OA, 0.042 +/- 0.008 vs. 0.005 +/- 0.003; [(13)C]LA, 0.038 +/- 0.010 vs. 0.008 +/- 0.002; [(13)C]DHA, 0.059 +/- 0.009 vs. 0.010 +/- 0.003). The ratio of tracer fatty acid concentrations of placenta to maternal plasma was significantly higher for [(13)C]DHA than for the other fatty acids ([(13)C]PA, 7.1 +/- 1%; [(13)C]OA, 3.8 +/- 0.4%; [(13)C]LA, 9.2 +/- 1.3%; [(13)C]DHA, 25.9 +/- 3.4%). These results suggest that only a part of the placental NEFA participated in fatty acid transfer, and that the placenta showed a preferential accretion of DHA relative to the other fatty acids.  相似文献   

3.
We studied four-link food chain, periphytic microalgae and water moss (producers), trichopteran larvae (consumers I), gammarids (omnivorous--consumers II) and Siberian grayling (consumers III) at a littoral site of the Yenisei River on the basis of three years monthly sampling. Analysis of bulk carbon stable isotopes and compound specific isotope analysis of fatty acids (FA) were done. As found, there was a gradual depletion in (13)C contents of fatty acids, including essential FA upward the food chain. In all the trophic levels a parabolic dependence of δ(13)C values of fatty acids on their degree of unsaturation/chain length occurred, with 18:2n-6 and 18:3n-3 in its lowest point. The pattern in the δ(13)C differences between individual fatty acids was quite similar to that reported in literature for marine pelagic food webs. Hypotheses on isotope fractionation were suggested to explain the findings.  相似文献   

4.
Most preterm infant formulas contain medium-chain triacylglycerols (MCT), but the effects of MCT on polyunsaturated fatty acid status and metabolism are controversial. Thus, we studied the effects of MCT on linoleic acid metabolism using stable isotopes. Enterally fed preterm infants were randomized to receive for 7 days 40% of fat as MCT (n = 10) or a formula without MCT (n = 9). At study day 5, infants received orally 2 mg/kg body weight of (13)C-labeled linoleic acid. Fatty acids in plasma lipid classes and (13)C enrichment of phospholipid fatty acids were measured and tracer oxidation was monitored. Compared with the control group, the MCT group showed lower breath (13)CO(2) and higher plasma triacylglycerol contents of octanoic acid, of decanoic acid, and of total long-chain polyunsaturated fatty acids (57.1 +/- 4.4 micro mol/l vs. 37.9 +/- 4.8 micro mol/l, P < 0.01). Concentrations of several polyunsaturated fatty acids in plasma phospholipids and non esterified fatty acids were higher in the MCT group. (13)C concentrations in phospholipid n-6 fatty acids indicated no difference in the relative conversion of linoleic to arachidonic acid. We conclude that oral MCT effectively reduce polyunsaturated fatty acid and long chain polyunsaturated fatty acid oxidation in preterm infants without compromising endogenous n-6 long chain polyunsaturated fatty acid synthesis.  相似文献   

5.
This study reports methods for the quantitative determination of stable isotope-labeled essential fatty acids (EFAs) as well as an experiment in which deuterium-labeled linoleic acid (18:2n-6) and alpha-linolenic acid (18:3n-3) were compared with those labeled with carbon-13 in rat plasma in vivo. Standard curves were constructed to compensate for concentration and plasma matrix effects. It was observed that endogenous pools of fatty acids had a greater suppressing effect on the measurements of 13C-U-labeled EFAs relative to those labeled with 2H5. Using these methods, the in vivo metabolism of orally administered deuterated-linolenate, 13C-U-labeled linolenate, deuterated-linoleate, and 13C-U-labeled linoleate was compared in adult rats (n = 11). There were no significant differences in the concentrations of the 2H versus 13C isotopomers of 18:2n-6, 18:3n-3, arachidonic acid (20:4n-6), and docosahexaenoic acid (22:6n-3) in rat plasma samples at 24 h after dosing. Thus, there appears to be little isotope effect for 2H5- versus 13C-U-labeled EFAs when the data are calculated using the conventional standard curves and corrected for endogenous fatty acid pool size and matrix effects.  相似文献   

6.
The use of N-methyl-N-(t-butyldimethylsilyl)trifluoroacetamide to prepare the t-butyldimethylsilyl derivatives of a number of organic compounds (selected amino acids, alpha-keto acids, ketone bodies, free fatty acids, urea, glycerol, lactate, and pyruvate) is reported. These derivatives are particularly useful for gas chromatographic/mass spectrometric analysis involving the use of stable isotopes and selected ion monitoring, since a peak of sufficient abundance at 57 mass/charge units below the molecular ion was always present, and was the result of the loss of one t-butyl group. In each case, this fragment contained the entire skeleton of the original compound, which permitted easy analysis using electron-impact ionization of these compounds alone or when labeled with stable isotopes in any nonexchangeable position.  相似文献   

7.
1. Natural abundance carbon-13 nmr spectra of several intact cestodes have been obtained. 2. All spectra show peaks assignable to triglycerides and the N(CH3)3 carbons of the choline moiety. 3. The olefinic region of the 13C nmr spectra indicated that the cestode larvae Mesocestoides corti and Echinococcus multilocularis have a larger concentration of polyunsaturated fatty acids than Hymenolepis adults. 4. Mobile fragments of glycogen were detected in all species studied, but its apparent concentration in individual cestodes was highly variable.  相似文献   

8.
[1-14C]acetate and [2-14C]acetate were incorporated into the β-diketones of barley spike epicuticular wax via the peduncle. Utilizing column chromatography with dry copper acetate, the β-diketones were isolated and the labeling pattern in the hentriacontan-14, 16-dione determined after its degradation. A modified iodoform procedure was used to give myristic and palmitic acids. Radio-gas chromatography was then performed on the products of chemical α-oxidation of the separated fatty acids. This procedure, in effect, gave the specific activity of every carbon atom of hentriacontan-14,16-dione except carbon-1 to carbon-5 (from myristic acid) and carbon-27 to carbon-31 (from palmitic acid) for each labeled substrate. The specific activity of carbon-15 was determined by an indirect method. On the basis of these data it is suggested that the hentriacontan-14,16-dione is synthesized from the carbon-31 end of the molecule by elongation as follows. C2 units are added, perhaps to a mixture of short chain precursors, to give a chain with 12 carbon atoms. This chain is then elongated to one with 16 carbon atoms so that the four added carbon atoms are uniformly labeled. Following this, the chain with 16 carbon atoms is elongated with C2 units to give the complete molecule. Possibly some change in mechanism occurs in this last elongation process when the chain is 22 carbon atoms long. Barley spike wax β-diketones contain about 2% nonacosan-13, 15-dione which seems to be synthesized in an analogous manner.  相似文献   

9.
The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group.  相似文献   

10.
Metabolism of glucose and L-amino acids in an obligately aerobic marine bacterium isolated from Pacific mackerel intestines was investigated for the mechanism and pathway of eicosapentaenoic acid (EPA) biosynthesis. This bacterium could not uptake glucose but the cell-free extract of this bacterium had the enzymatic activities of L-alanine oxidase (EC 1.4.3.2), L-alanine dehydrogenase (EC 1.4.1.1). L-serine dehydratase (EC 4.2.1.13), and malate dehydrogenase (EC 1.1.1.40), and of seven enzymes involved in the TCA cycle of the usual aerobes. On the other hand, the carbon-13 concentration in cellular fatty acids of the bacterium, especially that in their methyl carbon atoms in contrast to their carbonyl carbons, increased drastically when the bacterium was grown in the presence of 13CH3COONa. These results indicate that: (i) the TCA cycle works in this bacterium, (ii) glucose is not utilized and pyruvic acid is in vivo synthesized from L-alanine, L-serine, and malic acid, and (iii) EPA and other cellular fatty acids are in vivo synthesized from acetyl coenzyme A by the usual de novo synthesis route.  相似文献   

11.
The 2 beta-hydroxylated derivatives of lithocholic, chenodeoxycholic, deoxycholic, and cholic acids were synthesized from the respective parent bile acids by established procedures. The principal reactions involved were (1) bromination of 3-oxo formylated bile acids in N,N-dimethylformamide, (2) rearrangement and substitution of the resulting 4 beta-bromo-3-oxo derivatives to the 2 beta-acetoxy-3-oxo compounds with potassium acetate, and (3) reduction to the 2 beta-acetoxy-3 alpha-hydroxy compounds with tert-butylamine-borane complex. As for the prepared 2 beta-hydroxylated bile acids with a diequatorial trans-glycol structure, proton and carbon-13 nuclear magnetic resonance spectroscopic and gas-liquid chromatographic/mass spectrometric properties are discussed.  相似文献   

12.
Ladybird beetles produce a large number of defensive alkaloids. Previous studies suggest that the structural diversity of these endogenous alkaloids can be traced to a common biosynthetic route based on the condensation of several acetate units. In this study, adults of Epilachna paenulata, a phytophagous neotropical species, were fed on diet enriched with potential precursors (sodium acetate, fatty acids and the amino acids lysine and ornithine) labeled with stable isotopes ((13)C, (2)H and (15)N). Labeled acetate was incorporated into the structurally related homotropane and piperidine alkaloids. The later also showed incorporation of [methyl-(2)H3] stearic acid. Our results hence support a fatty acid pathway for the biosynthesis of E. paenulata alkaloids. To our knowledge, this is the first report on the incorporation of a labeled fatty acid into a defensive piperidine alkaloid in insects.  相似文献   

13.
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-(13)C(2)]hexadecane or perdeuterated pentadecane was used as the growth substrate, (13)C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the (13)C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two (13)C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1, 2-(13)C(2)]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.  相似文献   

14.
Circulating triacylglycerol (TG) arises mainly from dietary fat. However, little is known about the entry of dietary fat into the major TG pool, very low-density lipoprotein (VLDL) TG. We used a novel method to study the specific incorporation of dietary fatty acids into postprandial VLDL TG in humans. Eight healthy volunteers (age 25.4 +/- 2.2 years, body mass index 22.1 +/- 2.3 kg/m2) were fed a mixed meal containing 30 g fish oil and 600 mg [1-13C]palmitic acid. Chylomicrons and VLDL were separated using immunoaffinity against apolipoprotein B-100. The fatty acid composition of lipoproteins was analyzed by gas chromatography/mass spectrometry. [1-13C]palmitic acid started to appear in VLDL TG 3 h after meal intake, and a similar delay was observed for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Approximately 20% of dietary fatty acids entered the VLDL TG pool 6 h after meal intake. DHA was clearly overincorporated into this pool compared with [1-13C]palmitic acid and EPA. This seemed to depend on a marked elevation of this fatty acid in the nonesterified fatty acid pool. In summary, the contribution of dietary fatty acids to early postprandial VLDL TG is substantial. The role of DHA in VLDL TG production will require further investigation.  相似文献   

15.
Physical and chemical basis of carbon isotope fractionation in plants   总被引:11,自引:4,他引:7  
Naturally-occurring variations in the abundances of the stable isotopes of carbon and other elements can be used to understand the dynamics of natural processes in chemistry, biochemistry, biology, medicine, ecology and other fields. The use of carbon-13 isotopic abundances as an indicator of photosynthetic function in plants has become common. The purpose of this article is to describe the physical and chemical processes that contribute to the abundances of carbon-13 in plant materials, and to provide a framework for understanding how those processes control the isotopic contents of natural materials.  相似文献   

16.
Pathogen-inducible oxygenase (PIOX) oxygenates fatty acids into 2R-hydroperoxides. PIOX belongs to the fatty acid alpha-dioxygenase family, which exhibits homology to cyclooxygenase enzymes (COX-1 and COX-2). Although these enzymes share common catalytic features, including the use of a tyrosine radical during catalysis, little is known about other residues involved in the dioxygenase reaction of PIOX. We generated a model of linoleic acid (LA) bound to PIOX based on computational sequence alignment and secondary structure predictions with COX-1 and experimental observations that governed the placement of carbon-2 of LA below the catalytic Tyr-379. Examination of the model identified His-311, Arg-558, and Arg-559 as potential molecular determinants of the dioxygenase reaction. Substitutions at His-311 and Arg-559 resulted in mutant constructs that retained virtually no oxygenase activity, whereas substitutions of Arg-558 caused only moderate decreases in activity. Arg-559 mutant constructs exhibited increases of greater than 140-fold in K(m), whereas no substantial change in K(m) was observed for His-311 or Arg-558 mutant constructs. Thermal shift assays used to measure ligand binding affinity show that the binding of LA is significantly reduced in a Y379F/R559A mutant construct compared with that observed for Y379F/R558A construct. Although Oryza sativa PIOX exhibited oxygenase activity against a variety of 14-20-carbon fatty acids, the enzyme did not oxygenate substrates containing modifications at the carboxylate, carbon-1, or carbon-2. Taken together, these data suggest that Arg-559 is required for high affinity binding of substrates to PIOX, whereas His-311 is involved in optimally aligning carbon-2 below Tyr-379 for catalysis.  相似文献   

17.
Thermus aquaticus contains four major fatty acids, iso-C(15) (28%), iso-C(16) (9%), normal-C(16) (13%), and iso-C(17) (48%), when grown at 70 C, as determined by gas chromatography and mass spectrometry. Small amounts of iso-C(12), normal-C(12:1), iso-C(13), normal-C(14), iso-C(14), and normal-C(15:1) were also detected. A change in growth temperature (50 to 75 C at 5-C intervals) affects a shift in the proportions of some of the fatty acids. The proportions of the monoenoic and branched-C(17) fatty acids decreased and the proportions of the higher-melting iso-C(16) and normal-C(16) fatty acids increased. Cells grown at 75 C contained 70% more total fatty acids than cells grown at 50 C. The largest increases, in absolute amounts, were in the content of iso-C(16) and normal-C(16) fatty acids, with only a 1.6-fold increase in the major iso-C(15) and iso-C(17) fatty acids. There was a 2.5-fold decrease in normal-C(15:1) and at least a 24-fold decrease in anteiso-C(17), which is present at 50 and 55 C but not at higher temperatures. There was no difference in proportion or amount of fatty acids between exponential and stationary-phase cells grown at 70 C. When cells were grown on glutamate instead of yeast-extract and tryptone at 70 C, the total fatty acid content remained constant, but there was an increase in the proportions of iso-C(16) and normal-C(16) fatty acids concomitant with a decrease in the proportions of the iso-C(15) and iso-C(17) fatty acids.  相似文献   

18.
Narwhals (Monodon monoceros) are sentinel species in the Arctic and to investigate marine food web changes from 1982–2011 we examined diet using fatty acids, δ15N, and δ13C, in narwhals from Baffin Bay (BB) and northern Hudson Bay (NHB). We predicted temporal changes would be greater in NHB due to a significant reduction in summer ice cover. In NHB, δ15N significantly increased, δ13C displayed a parabolic trend, and fatty acids gradually shifted, albeit not significantly, over time. δ15N was stable, δ13C decreased, and fatty acids significantly changed over time in BB. Stable isotope mixing models indicated a dietary reduction in capelin and increase in Greenland halibut from 1994–2000 to 2006–2011 in BB, while capelin was an important dietary component for narwhals in NHB in recent years (2006–2011). These dietary changes may be attributed to changes in sea ice and narwhal migration. Seasonal dietary changes, as evidenced by changes in blubber fatty acids and skin and muscle stable isotopes, were not as apparent in the NHB population, which may be indicative of a reduced migratory distance. Long‐term monitoring of narwhal diet and migratory patterns associated with reduced sea ice provides invaluable information about how the marine ecosystem will redistribute with global warming.  相似文献   

19.
Developing embryos of Brassica napus accumulate both triacylglycerols and proteins as major storage reserves. To evaluate metabolic fluxes during embryo development, we have established conditions for stable isotope labeling of cultured embryos under steady-state conditions. Sucrose supplied via the endosperm is considered to be the main carbon and energy source for seed metabolism. However, in addition to 220 to 270 mM carbohydrates (sucrose, glucose, and fructose), analysis of endosperm liquid revealed up to 70 mM amino acids as well as 6 to 15 mM malic acid. Therefore, a labeling approach with multiple carbon sources is a precondition to quantitatively reflect fluxes of central carbon metabolism in developing embryos. Mid-cotyledon stage B. napus embryos were dissected from plants and cultured for 15 d on a complex liquid medium containing (13)C-labeled carbohydrates. The (13)C enrichment of fatty acids and amino acids (after hydrolysis of the seed proteins) was determined by gas chromatography/mass spectrometry. Analysis of (13)C isotope isomers of labeled fatty acids and plastid-derived amino acids indicated that direct glycolysis provides at least 90% of precursors of plastid acetyl-coenzyme A (CoA). Unlabeled amino acids, when added to the growth medium, did not reduce incorporation of (13)C label into plastid-formed fatty acids, but substantially diluted (13)C label in seed protein. Approximately 30% of carbon in seed protein was derived from exogenous amino acids and as a consequence, the use of amino acids as a carbon source may have significant influence on the total carbon and energy balance in seed metabolism. (13)C label in the terminal acetate units of C(20) and C(22) fatty acids that derive from cytosolic acetyl-CoA was also significantly diluted by unlabeled amino acids. We conclude that cytosolic acetyl-CoA has a more complex biogenetic origin than plastidic acetyl-CoA. Malic acid in the growth medium did not dilute (13)C label incorporation into fatty acids or proteins and can be ruled out as a source of carbon for the major storage components of B. napus embryos.  相似文献   

20.
The goal of this study was to determine whether administration of the CB(1) cannabinoid receptor antagonist rimonabant would alter fatty acid flux in nonhuman primates. Five adult baboons (Papio Sp) aged 12.1 ± 4.7 yr (body weight: 31.9 ± 2.1 kg) underwent repeated metabolic tests to determine fatty acid and TG flux before and after 7 wk of treatment with rimonabant (15 mg/day). Animals were fed ad libitum diets, and stable isotopes were administered via diet (d(31)-tripalmitin) and intravenously ((13)C(4)-palmitate, (13)C(1)-acetate). Plasma was collected in the fed and fasted states, and blood lipids were analyzed by GC-MS. DEXA was used to assess body composition and a hyperinsulinemic euglycemic clamp used to assess insulin-mediated glucose disposal. During the study, no changes were observed in food intake, body weight, plasma, and tissue endocannabinoid concentrations or the quantity of liver-TG fatty acids originating from de novo lipogenesis (19 ± 6 vs. 16 ± 5%, for pre- and posttreatment, respectively, P = 0.39). However, waist circumference was significantly reduced 4% in the treated animals (P < 0.04), glucose disposal increased 30% (P = 0.03), and FFA turnover increased 37% (P = 0.02). The faster FFA flux was consistent with a 43% reduction in these fatty acids used for TRL-TG synthesis (40 ± 3 vs. 23 ± 4%, P = 0.02) and a twofold increase in TRL-TG turnover (1.5 ± 0.9 vs. 3.1 ± 1.4 μmol·kg(-1)·h(-1), P = 0.03). These data support the potential for a strong effect of CB(1) receptor antagonism at the level of adipose tissue, resulting in improvements in fasting turnover of fatty acids at the whole body level, central adipose storage, and significant improvements in glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号