首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate a significance of the expression of brain-derived neurotrophic factor (BDNF) in the activated microglia/macrophages of the injured central nervous system, we examined BDNF actions on or BDNF synthesis by macrophages cultured from the mouse peritoneal cavity. They synthesized BDNF and neurotrophin-3 (NT-3) in addition to expressing high-affinity neurotrophin receptors, full-length TrkB (FL), truncated TrkB (TK(-)), and TrkC, thus suggesting an autocrine influence of BDNF and NT-3. BDNF, but not NT-3, enhanced phagocytic activity and stimulated synthesis/secretion of interleukin-1beta in the same manner as lipopolysaccharide (LPS). Furthermore, there was a significant correlation of the phagocytic activity with the expression of BDNF or TrkB (FL). These results imply that the phagocytic activity of macrophages depends on BDNF synthesis and/or TrkB (FL) expression, suggesting that BDNF participates in the activation processes of macrophages by acting in an autocrine manner.  相似文献   

2.
Neurotrophins play an essential role in nerve systems. Recent reports indicated that neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)] have numerous effects on non-neural cells, especially on immune cells. However, whether lung cells express neurotrophins and/or their receptors (TrkA for NGF, TrkB for BDNF and NT-4/5, and TrkC for NT-3) has never been systematically investigated. We investigated constitutive expression of neurotrophin family and their Trk receptor family in alveolar macrophages and other peripheral lung cells of mice. New findings were: (1) RT-PCR for neurotrophins and their receptors detected NT-3 and NT-4/5 in alveolar macrophages, BDNF, NT-4/5, trkA, the truncated form of trkB, and trkC in lung homogenate, but no trks in alveolar macrophages, (2) immunohistochemistry for neurotrophin receptors detected TrkA in capillary cells, the truncated form of TrkB, and TrkC in interstitial macrophages, (3) immunoelectron microscopy for TrkC revealed expression of TrkC on the surface of interstitial macrophages, and (4) in situ hybridization for neurotrophins detected BDNF in interstitial macrophages and alveolar type I cells, NT-3 in alveolar macrophages, and NT-4/5 in alveolar and interstitial macrophages. These findings indicate that a previously unknown signal trafficking occurs through neurotrophins in peripheral lung.  相似文献   

3.
The ability of neurotrophin-4/5 (NT-4/5), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF) to promote survival of postnatal rat vestibular ganglion neurons (VGNs) was examined in dissociated cell cultures. Of the four neurotrophins, NT-4/5 and BDNF were equally effective but more potent than NT-3 in promoting the survival of VGNs. In contrast, NGF showed no detectable effects. As expected, TrkB-IgG (a fusion protein of extracellular domain of TrkB and Fc domain of human immunoglobulin G) specifically inhibited the survival-promoting effects by NT-4/5 or BDNF and TrkC-IgG fusion protein completely blocked that of NT-3. Immunohistochemistry with TrkB, TrkA, and p75 antisera revealed that VGNs made TrkB and p75 proteins, but not TrkA protein. Ototoxic therapeutic drugs such as cisplatin and gentamicin often induce degeneration of hair cells and ganglion neurons in both auditory and vestibular systems that leads to impairment of hearing and balance. When cisplatin and gentamicin were added to the dissociated VGN culture in which the hair cells were absent, additional cell death of VGNs was induced, suggesting that the two ototoxins may have a direct neurotoxic effect on ganglion neurons in addition to their known toxicity on hair cells. However, if the cultures were co-treated with neurotrophins, NT-4/5, BDNF, and NT-3, but not NGF, prevented or reduced the neurotoxicity of the two ototoxins. Thus, the three neurotrophins are survival factors for VGNs and are implicated in the therapeutic prevention of VGN loss caused by injury and ototoxins. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
5.
The neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are both expressed in developing cerebellum in addition to their tyrosine kinase receptors, TrkB and TrkC. In contrast to BDNF, NT-3 has only a negligible or a transient survival activity on cultured cerebellar granule neurons. The granule neurons however, express both TrkC and Trk B receptors which suggests a basic difference in signaling between BDNF and NT-3 in these neurons. Here we have studied whether this difference can be attributed to the presence of alternative TrkC receptor variants on the granule neurons and which signaling pathway is specifically activated by BDNF but not by NT-3 in these neurons. Using RT-PCR it was shown that the cerebellar granule neurons express the full length TrkC receptor, in addition to variant receptors containing small inserts in the receptor tyrosine kinase domain. There was no dramatic change in the relative amounts of different TrkC receptors during development. However, we found the TrkC receptor constitutively phosphorylated even in the absence of added ligand suggesting an interaction of TrkC with endogenously produced NT-3. In addition, NT-3 was able to phosphorylate the BDNF receptor, TrkB but only at higher concentration (50 ng/ml). There were also distinct differences in the activation of intracellular molecules by BDNF and NT-3. Thus, p21 Ras and PLCγ were activated by BDNF but not by NT-3 whereas both BDNF and NT-3 increased calcium and c-fos mRNA in the granule neurons. These results show that differential activation of specific intracellular pathways such as that of p21 Ras determines the specific effects of BDNF and NT-3 on granule neuron survival. In addition, since calcium is increased by NT-3 in the cerebellar granule neurons, this neurotrophin might have some unknown important effects on these neurons. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

6.
The present study was undertaken to examine whether NKH477, a novel and potent water-soluble forskolin derivative, stimulates adenylyl cyclase and regulates brain-derived neurotrophic factor (BDNF) and TrkB expression in the rat brain. Administration of NKH477 at a dose of 1.0 mg/kg, but not 0.1 mg/kg, increased levels of cyclic AMP (cAMP) in a time-dependent manner in frontal cortex and hippocampus. Repeated administration of NKH477 (1.0 mg/kg) for 7 or 14 days also increased levels of cAMP in these two brain regions, indicating that the response does not desensitize with chronic treatment. In addition, administration of NKH477 at the 1 mg/kg dose increased the expression of BDNF and TrkB mRNA in frontal cortex and hippocampus. This effect was observed after single, as well as repeated (7 or 14 days), administration of NKH477. These results demonstrate that NKH477 administration rapidly increases cAMP levels in brain and provides evidence that stimulation of this second messenger system increases the expression of BDNF and TrkB mRNA.  相似文献   

7.
Neurotrophins (NTs) are emerging as important mediators of angiogenesis and fibrosis. We investigated the expression of the NTs nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) and their receptors TrkA, TrkB, and TrkC in proliferative diabetic retinopathy (PDR). As a comparison, we examined the expression of NTs and their receptors in the retinas of diabetic rats. Vitreous samples from 16 PDR and 15 nondiabetic patients were studied by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). Epiretinal membranes from 17 patients with PDR were studied by immunohistochemistry. Rats were made diabetic with a single high dose of streptozotocin and retinas of rats were examined by Western blot analysis. Western blot analysis revealed a significant increase in the expression of NT-3 and NT-4 and the shedding of receptors TrkA and TrkB in vitreous samples from PDR patients compared to nondiabetic controls, whereas NGF and BDNF and the receptor TrkC were not detected with the use of Western blot analysis and ELISA. In epiretinal membranes, vascular endothelial cells and myofibroblasts expressed NT-3 and the receptors TrkA, TrkB and TrkC in situ, whereas NT-4 was not detected. The expression levels of NT-3 and NT-4 and the receptors TrkA and TrkB, both in intact and solubilized forms, were upregulated in the retinas of diabetic rats, whereas the receptor TrkC was not detected. Co-immunoprecipitation studies revealed binding between NT-3 and the receptors TrkA and TrkB in the retinas of diabetic rats. Our findings in diabetic eyes from humans and rats suggest that the increased expression levels within the NT-3 and NT-4/Trk axis are associated with the progression of PDR.  相似文献   

8.
Abstract: TrkB belongs to the Trk family of tyrosine kinase receptors and mediates the response to brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5). Here, we report that both truncated and full-length forms of TrkB receptors are expressed in developing cerebellar granule neurons. BDNF and NT-4/5 increased the survival of cultured cerebellar granule neurons. BDNF and NT-4/5 also induced an autophosphorylation of TrkB receptors and subsequently resulted in a phosphorylation and binding of phospholipase C-γ (PLC-γ) and SH2-containing sequence to the autophosphorylated TrkB receptors. Both contain src homology 2 (SH2) regions. In keeping with a signaling function of PLC-γ, BDNF increased the phosphatidylinositol (PI) turnover and elevated intracellular calcium levels. To investigate the involvement of protein kinase C (PKC) in the survival of granular neurons, we show here activation of PKC after BDNF or TPA treatment and blocking of the observed survival-promoting effects of BDNF and TPA with calphostin C, a specific PKC inhibitor. In addition, BDNF activated c- ras in a concentration-dependent manner. These results suggest that two different pathways, the c- ras and the PLC-γ pathway, are activated by TrkB receptors in primary neurons and that PKC activation is involved in the survival promoting effect of BDNF.  相似文献   

9.
Nitric oxide (NO) mediates pharmacological effects of opiates including dependence and abstinence. Modulation of NO synthesis during the induction phase of morphine dependence affects manifestations of morphine withdrawal syndrome, though little is known about mechanisms underlying this phenomenon. Neurotrophic and growth factors are involved in neuronal adaptation during opiate dependence. NO-dependent modulation of morphine dependence may be mediated by changes in expression and activity of neurotrophic and/or growth factors in the brain. Here, we studied the effects of NO synthesis inhibition during the induction phase of morphine dependence on the expression of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and insulin-like growth factor 1 (IGF1) as well as their receptors in rat brain regions after spontaneous morphine withdrawal in dependent animals. Morphine dependence in rats was induced within 6 days by 12 injections of morphine in increasing doses (10–100 mg/kg), and NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) (10 mg/kg) was given 1 h before each morphine injection. The expression of the BDNF, GDNF, NGF, IGF1, and their receptors in the frontal cortex, striatum, hippocampus, and midbrain was assessed 40 h after morphine withdrawal. L-NAME treatment during morphine intoxication resulted in an aggravation of the spontaneous morphine withdrawal severity. Morphine withdrawal was accompanied by upregulation of BDNF, IGF1, and their receptors TrkB and IGF1R, respectively, on the mRNA level in the frontal cortex, and only BDNF in hippocampus and midbrain. L-NAME administration during morphine intoxication decreased abstinence-induced upregulation of these mRNAs in the frontal cortex, hippocampus and midbrain. L-NAME prevented from abstinence-induced elevation of mature but not pro-form of BDNF polypeptide in the frontal cortex. While morphine abstinence did not affect TrkB protein levels as well as its phosphorylation status, inhibition of NO synthesis decreased levels of phosphorylated TrkB after withdrawal. Thus, NO signaling during induction of dependence may be involved in the mechanisms of BDNF expression and processing at abstinence, thereby affecting signaling through TrkB in the frontal cortex.  相似文献   

10.
Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.  相似文献   

11.
Regulation of calbindin and calretinin expression by brain-derived neurotrophic factor (BDNF) was examined in primary cultures of cortical neurons using immunocytochemistry and northern blot analysis. Here we report that regulation of calretinin expression by BDNF is in marked contrast to that of calbindin. Indeed, chronic exposure of cultured cortical neurons for 5 days to increasing concentrations of BDNF (0.1-10 ng/ml) resulted in a concentration-dependent decrease in the number of calretinin-positive neurons and a concentration-dependent increase in the number of calbindin-immunoreactive neurons. Consistent with the immunocytochemical analysis, BDNF reduced calretinin mRNA levels and up-regulated calbindin mRNA expression, providing evidence that modifications in gene expression accounted for the changes in the number of calretinin- and calbindin-containing neurons. Among other members of the neurotrophin family, neurotrophin-4 (NT-4), which also acts by activating tyrosine kinase TrkB receptors, exerted effects comparable to those of BDNF, whereas nerve growth factor (NGF) was ineffective. As for BDNF and NT-4, incubation of cortical neurons with neurotrophin-3 (NT-3) also led to a decrease in calretinin expression. However, in contrast to BDNF and NT-4, NT-3 did not affect calbindin expression. Double-labeling experiments evidenced that calretinin- and calbindin-containing neurons belong to distinct neuronal subpopulations, suggesting that BDNF and NT-4 exert opposite effects according to the neurochemical phenotype of the target cell.  相似文献   

12.
Abstract: The ability of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) to promote neuronal survival and phenotypic differentiation was examined in dissociated cultures from embryonic day 16 rat cerebellum. BDNF treatment increased the survival of neuron-specific enolase-immunopositive cells by 250 and 400% after 8 and 10 days in culture, respectively. A subpopulation of these neurons, the Purkinje cells, identified by calbindin staining, was increased to an equivalent extent, ∼200%, following BDNF, NT-4/5, or NT-3 treatment. The number of GABAergic neurons, identified by GABA immunoreactivity, was greatly increased by treatment with BDNF (470%) and moderately by NT-4/5 (46%), whereas NT-3 was without effect. NGF failed to increase the number of either Purkinje cells or GABAergic neurons. Addition of BDNF within 48 h of cell plating was required to obtain a maximal increase in Purkinje cell number after 8 days. In contrast, the NT-3 responses were nearly equivalent even if treatment was delayed for 96 h after plating. BDNF, NT-4/5, and NT-3, but not NGF, induced the rapid expression of the immediate early gene c- fos . Immunocytochemical double-labeling with antibodies to c-fos and calbindin was used to identify Purkinje cells that responded to neurotrophin treatment by induction of c-fos. After 4 days in vitro, both BDNF and NT-3 induced the formation of c-fos protein in calbindin-immunopositive neurons, whereas NT-4/5 did not. The latter results suggest that although BDNF and NT-4/5 have been shown to act through a common receptor, TrkB, it appears that the effects of BDNF and NT-4/5 are not identical.  相似文献   

13.
The role of brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology as well as treatment outcome of schizophrenia. Rodent studies indicate that several antipsychotic drugs have time-dependent (and differential) effects on BDNF levels in the brain. Earlier studies from our laboratory have indicated that long-term treatment with haloperidol (HAL) decreases BDNF, reduced GSH and anti-apoptotic marker, Bcl-xl protein levels and increases the expression of pro-apoptotic proteins in rat frontal cortex. Furthermore, findings from human as well as rodent studies suggest that treatment of schizophrenia must involve the neuroprotective strategies to improve the neuropathology and thereby clinical outcome. In the present study, we investigated the potential of cystamine (CYS), an anti-oxidant and anti-apoptotic compound, to prevent HAL-induced reduction in BDNF, GSH, and Bcl-xl protein levels in mice and the signaling mechanism(s) involved in the beneficial effects of CYS. The results indicated that CYS as well as cysteamine (the FDA-approved precursor of CYS) increased BDNF protein levels in mouse frontal cortex 7 days after treatment. CYS co-treatment prevented chronic HAL treatment-induced reduction in BDNF, GSH, and Bcl-xl protein levels. CYS treatment enhanced TrkB-tyrosine phosphorylation and activated Akt and extracellular signal-regulated kinase (ERK)1/2, downstream molecules of TrkB signaling. In addition, in vitro experiments with mouse cortical neurons showed that CYS prevented the HAL-induced reduction in neuronal cell viability and BDNF protein levels, and increase in apoptosis. BDNF-neutralizing antibody as well as K252a, a selective inhibitor of neurotrophin signaling blocked the CYS-mediated neuroprotection. Moreover, CYS-mediated neuroprotection is also blocked by LY294002, a phosphatidylinositol 3-kinase inhibitor or PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor. Thus, CYS protects cortical neurons through a mechanism involving TrkB receptor activation, and a signaling pathway involving phosphatidylinositol 3-kinase and MAPK. The findings from the present study may be helpful for the development of novel neuroprotective strategies to improve the treatment outcome of schizophrenia.  相似文献   

14.
Immunohistochemical distribution and cellular localization of neurotrophins was investigated in adult monkey brains using antisera against nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Western blot analysis showed that each antibody specifically recognized appropriate bands of approximately 14.7 kDa, 14.2 kDa, 13.6 kDa, and 14.5 kDa, for NGF, BDNF, NT-3, and NT-4, respectively. These positions coincided with the molecular masses of the neurotrophins studied. Furthermore, sections exposed to primary antiserum preadsorbed with full-length NGF, BDNF, NT-3, and NT-4 exhibited no detectable immunoreactivity, demonstrating specificities of the antibodies against the tissues prepared from rhesus monkeys. The study provided a systematic report on the distribution of NGF, BDNF, NT-3, and NT-4 in the monkey brain. Varying intensity of immunostaining was observed in the somata and processes of a wide variety of neurons and glial cells in the cerebrum, cerebellum, hippocampus, and other regions of the brain. Neurons in some regions such as the cerebral cortex and the hippocampus, which stained for neurotrophins, also expressed neurotrophic factor mRNA. In some other brain regions, there was discrepancy of protein distribution and mRNA expression reported previously, indicating a retrograde or anterograde action mode of neurotrophins. Results of this study provide a morphological basis for the elucidation of the roles of NGF, BDNF, NT-3, and NT-4 in adult primate brains.  相似文献   

15.
We studied the expression of neurotrophins and their Trk receptors in the chicken cochlea. Based on in situ hybridization, brain-derived neurotrophic factor (BDNF) is the major neurotrophin there, in contrast to the mammalian cochlea, where neurotrophin-3 (NT-3) predominates. NT-3 mRNA labeling was weak and found only during a short time period in the early cochles. During embryogenesis, BDNF mRNA was first seen in early differentiating hair cells. Afferent cochlear neurons expressed trkB mRNA from the early stages of gangliogenesis onward. In accordance, in vitro, BDNF promoted survival of dissociated neurons and stimulated neuritogenesis from ganglionic explants. High levels of BDNF mRNA in hair cells and trkB mRNA in cochlear neurons persisted in the mature cochlea. In addition, mRNA for the truncated TrkB receptor was expressed in nonneuronal cells, specifically in supporting cells, located adjacent to the site of BDNF synthesis and nerve endings. Following acoustic trauma, regenerated hair cells acquired BDNF mRNA expression at early stages of differentiation. Truncated trkB mRNA was lost from supporting cells that regenerated into hair cells. High levels of BDNF mRNA persisted in surviving hair cells and trkB mRNA in cochlear neurons after noise exposure. These results suggest that in the avian cochlea, peripheral target-derived BDNF contributes to the onset and maintenance of hearing function by supporting neuronal survival and regulating the (re)innervation process. Truncated TrkB receptors may regulate the BDNF concentration available to neurites, and they might have an important role during reinnervation. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 1019–1033, 1997  相似文献   

16.
The roles of dietary tryptophan (Trp) were evaluated in regulation of production of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin (NT)-3 in the various brain regions in ddY mice. Feeding the mice a Trp-deficient diet for 2 weeks significantly decreased in the hippocampal level of NGF but not those of BDNF and NT-3, as compared with feeding an adequate Trp diet. The mice fed excess Trp did not have different levels of any of these neurotrophins than in the mice fed an adequate Trp diet. The levels of BDNF in the cerebral cortex were also significantly lower in the mice fed on a Trp-deficient diet, while the levels of NGF and NT-3 in the region were not modulated upon feeding of the diet. The dietary Trp level had no significant effect on the levels of NGF, BDNF, or NT-3 in the entorhinal cortex nor septum of the mice. These results demonstrate that the brain levels of NGF and BDNF are dependent on the dietary content of tryptophan.  相似文献   

17.
18.
Although it is well established that both follicular assembly and the initiation of follicle growth in the mammalian ovary occur independently of pituitary hormone support, the factors controlling these processes remain poorly understood. We now report that neurotrophins (NTs) signaling via TrkB receptors are required for the growth of newly formed follicles. Both neurotrophin-4/5 (NT-4) and brain-derived neurotrophic factor (BDNF), the preferred TrkB ligands, are expressed in the infantile mouse ovary. Initially, they are present in oocytes, but this site of expression switches to granulosa cells after the newly assembled primordial follicles develop into growing primary follicles. Full-length kinase domain-containing TrkB receptors are expressed at low and seemingly unchanging levels in the oocytes and granulosa cells of both primordial and growing follicles. In contrast, a truncated TrkB isoform lacking the intracellular domain of the receptor is selectively expressed in oocytes, where it is targeted to the cell membrane as primary follicles initiate growth. Using gene-targeted mice lacking all TrkB isoforms, we show that the ovaries of these mice or those lacking both NT-4 and BDNF suffer a stage-selective deficiency in early follicular development that compromises the ability of follicles to grow beyond the primary stage. Proliferation of granulosa cells-required for this transition-and expression of FSH receptors (FSHR), which reflects the degree of biochemical differentiation of growing follicles, are reduced in trkB-null mice. Ovaries from these animals grafted under the kidney capsule of wild-type mice fail to sustain follicular growth and show a striking loss of follicular organization, preceded by massive oocyte death. These results indicate that TrkB receptors are required for the early growth of ovarian follicles and that they exert this function by primarily supporting oocyte development as well as providing granulosa cells with a proliferative signal that requires oocyte-somatic cell bidirectional communication. The predominance of truncated TrkB receptors in oocytes and their developmental pattern of subcellular expression suggest that a significant number of NT-4/BDNF actions in the developing mammalian ovary are mediated by these receptors.  相似文献   

19.
TrkB is a member of the Trk family of tyrosine kinase receptors. In vivo, the extracellular region of TrkB is known to bind, with high affinity, the neurotrophin protein brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). We describe the expression and purification of the second Ig-like domain of human TrkB (TrkBIg(2)) and show, using surface plasmon resonance, that this domain is sufficient to bind BDNF and NT-4 with subnanomolar affinity. BDNF and NT-4 may have therapeutic implications for a variety of neurodegenerative diseases. The specificity of binding of the neurotrophins to their receptor TrkB is therefore of interest. We examine the specificity of TrkBIg(2) for all the neurotrophins, and use our molecular model of the BDNF-TrkBIg(2) complex to examine the residues involved in binding. It is hoped that the understanding of specific interactions will allow design of small molecule neurotrophin mimetics.  相似文献   

20.
Both mature and precursor forms of neurotrophins regulate nerve development, survival and plasticity. Brain-derived neurotrophic factor (BDNF) synthesis and secretion in turn are regulated by neuronal activity, such as epilepsy. Further, neurotrophins themselves are regulated by neurotrophin levels. Neurotrophin-3 (NT-3) and BDNF in particular can be co-expressed and each can regulate the levels of the other. This regulation is thought to be mediated through receptor tyrosine kinase (Trk) activity. It is not known whether this neurotrophin-neurotrophin interaction occurs in hippocampal tissue in vivo, or how it is influenced by neuronal activation. In this study, we explored the reciprocal influences of intraventricular infusions of NT-3 and BDNF in na?ve and kindled hippocampi of rats using Western blotting. We confirm that hippocampal kindling resulted in a significant increase in levels of BDNF both in cytochrome C (control) infused and NT-3 infused kindled rats. However, NT-3 infusion significantly reduced BDNF levels in both kindled and non-kindled hippocampi compared to their cytochrome C infused counterparts. These results are consistent with our earlier studies demonstrating lowered levels of TrkA and TrkC (NGF modulates BDNF levels via TrkA) following chronic NT-3 infusion. Although kindling led to an increase in BDNF, this was not accompanied by any detectable change in the levels of proBDNF. However, there was a significant increase in proBDNF following NT-3 infusions, suggesting NT-3 may reduce proBDNF processing. In contrast, neither NT-3 nor proNT-3 levels were affected by kindling or chronic BDNF infusions, consistent with down-regulation of TrkB by chronic BDNF infusion. Thus, modulation of BDNF by NT-3, likely mediated by Trk receptors, occurs in na?ve and kindled adult rat hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号