首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trypsin is shown to generate an insecticidal toxin from the 130-kDa protoxin of Bacillus thuringiensis subsp. kurstaki HD-73 by an unusual proteolytic process. Seven specific cleavages are shown to occur in an ordered sequence starting at the C-terminus of the protoxin and proceeding toward the N-terminal region. At each step, C-terminal fragments of approximately 10 kDa are produced and rapidly proteolyzed to small peptides. The sequential proteolysis ends with a 67-kDa toxin which is resistant to further proteolysis. However, the toxin could be specifically split into two fragments by proteinases as it unfolded under denaturing conditions. Papain cleaved the toxin at glycine 327 to give a 34.5-kDa N-terminal fragment and a 32.3-kDa C-terminal fragment. Similar fragments could be generated by elastase and trypsin. The N-terminal fragment corresponds to the conserved N-terminal domain predicted from the gene-deduced sequence analysis of toxins from various subspecies of B. thuringiensis, and the C-terminal fragment is the predicted hypervariable sequence domain. A double-peaked transition was observed for the toxin by differential scanning calorimetry, consistent with two or more independent folding domains. It is concluded that the N- and C-terminal regions of the protoxin are two multidomain regions which give unique structural and biological properties to the molecule.  相似文献   

3.
4.
Bacillus thuringiensis subsp. aizawai HD133 is one of several strains particularly effective against Plodia interpunctella selected for resistance to B. thuringiensis subsp. kurstaki HD1 (Dipel). B. thuringiensis subsp. aizawai HD133 produces inclusions containing three protoxins, CryIA(b), CryIC, and CryID, and the CryIC protoxin has been shown to be active on resistant P. interpunctella as well as on Spodoptera larvae. The CryIA(b) protoxin is very similar to the major one in B. thuringiensis subsp. kurstaki HD1, and as expected, this protoxin was inactive on resistant P. interpunctella. A derivative of B. thuringiensis subsp. aizawai HD133 which had been cured of a 68-kb plasmid containing the cryIA(b) gene produced inclusions comprising only the CryIC and CryID protoxins. Surprisingly, these inclusions were much less toxic for resistant P. interpunctella and two other Lepidoptera than those produced by the parental strain, whereas the soluble protoxins from these strains were equally effective. In contrast, inclusions from the two strains were about as active as soluble protoxins for Spodoptera frugiperda larvae, so toxicity differences between inclusions may be due to the solubilizing conditions within particular larval guts. Consistent with this hypothesis, it was found that a higher pH was required to solubilize protoxins from inclusions from the plasmid-cured strain than from B. thuringiensis subsp. aizawai HD133, a difference which is probably attributable to the absence of the CryIA(b) protoxin in the former. The interactions of structurally related protoxins within an inclusion are probably important for solubility and are thus another factor in the effectiveness of B. thuringiensis isolates for particular insect larvae.  相似文献   

5.
The conversion of delta-endoprotoxins of Bacillus thuringiensis to active toxins is mediated by trypsin, insect gut (exogenous) and bacterial (endogenous) proteases. The biochemical aspects of exogenous and endogenous proteases involved in the conversion of protoxin to toxin are reviewed. Perhaps, these proteases also play a role in influencing the host range of toxin and in the development of resistance to toxin.  相似文献   

6.
Effects of minerals on the conformational changes of protoxin isolated from Bacillus thuringiensis were investigated by circular dichroism and fluorescence spectroscopy. Contact of the protoxin with attapulgite, montmorillonite and kaolinite for 3 h resulted in no significant changes in the spectra of circular dichroism and a slight decrease in the fluorescence intensity. There were significant changes in spectra of circular dichroism of protoxin after desorption in comparison to the native protoxin. The fluorescence intensity of protoxins desorbed from minerals retained 77.5, 63.7 and 60.4% of intensity of native protoxin, respectively. The influential extent of desorption on the secondary structure was higher than that of contact.  相似文献   

7.
Escherichia coli strains harboring deletion mutations of the insecticidal protoxin gene of Bacillus thuringiensis subsp. berliner 1715 were constructed. Although these strains did not produce intact protoxin, cell extracts from one of the mutants were extremely toxic to tobacco hornworm (Manduca sexta) larvae, indicating that only a part of the protoxin gene is required for insecticidal activity.  相似文献   

8.
Limited tryptic hydrolysis of a partially purified delta-toxin (Mr = 100,000) from Bacillus thuringiensis, has produced a polypeptide fragment of Mr = 60,000 containing the full biological activity. The fragment was the only polypeptide observed in the polyacrylamide-gel electrophoresis of the delta-toxin after treatment with trypsin and could be purified by DEAE-cellulose chromatography. Amino acid and partial sequence analyses indicate that the 60,000 Mr fragment has been derived from the mid-section of the holotoxin peptide; over 80% of Lys, 65% of Pro and 50% of His residues in the holotoxin have been lost in the active fragment. This section must contain the active site since its specific insecticidal activity is approximately twice that of the holotoxin. The active fragment shows complete cross-reactivity with the antiserum raised against the native toxin, and appeared to possess higher thermal stability than the mother protein. It provides a powerful tool for studies of the structure involved in the insecticidal activity.  相似文献   

9.
The amino acid sequences necessary for entomocidal activity of the CryIA(b) protoxin of Bacillus thuringiensis were determined. Introduction of stop codons behind codons Arg601, Phe604 or Ala607 showed that amino acid residues C-terminal to Ala607 are not required for insecticidal activity and that activation by midgut proteases takes place distal to Ala607. The two shortest polypeptides, deleted for part of the highly conserved β-strand, were prone to proteolytic degradation, explaining their lack of toxicity. Apparently, this β-strand is essential for folding of the molecule into a stable conformation. Proteolytic activation at the N-terminus was investigated by removing the first 28 codons, resulting in a translation product extending from amino acid 29 to 607. This protein appeared to be toxic not only to susceptible insect larvae such as Manduca sexta and Heliothis virescens, but also to Escherichia coli cells. An additional mutant, encoding only amino acid residues 29–429, encompassing the complete putative pore forming domain, but lacking a large part of the receptor-binding domain, was similarly toxic to E. coli cells. This suggests a role for the N-terminal 28 amino acids in rendering the toxin inactive in Bacillus thuringiensis, and indicates that the cytolytic potential of the pore forming domain is only realized after proteolytic removal of these residues by proteases in the insect gut. In line with this hypothesis are results obtained with a mutant protein in which Arg28 at the cleavage site was replaced by Asp. This substitution prevented the protein from being cleaved by trypsin in vitro, and reduced its toxicity to M. sexta larvae.  相似文献   

10.
Proteins synthesized by the bacterium Bacillus thuringiensis are potent insecticides. When ingested by susceptible larvae they rapidly lyse epithelial cells lining the midgut. In vitro the toxins lyse certain insect cell lines and show saturable, high-affinity binding to brush-border membrane vesicles (BBMVs) prepared from insect midguts. We observed that the sugar N-acetyl galactosamine (GalNAc) specifically decreased the cytolytic activity of a CryIA(c) toxin towards Choristoneura fumiferana CF1 cells, completely abolished toxin binding to Manduca sexia BBMVs, partially inhibited binding to Heliothis virescens BBMVs and had no apparent effect on binding to Pieris brassicae BBMVs. In ligand blotting experiments the toxin bound proteins of 120 kDa in M. sexta, 125 kDa in P. brassicae and numerous proteins in H. zea. Toxin binding to these proteins was specifically inhibited by GalNAc. The toxin binding proteins of M. sexta and H. zea also bound the lectin soybean agglutinin. Taken together these findings suggest that N-acetyl galactosamine might be a component of a CryIA(c) toxin receptor of CF1 cells and of at least two of the insects tested.  相似文献   

11.
The cry1I genes from Bacillus thuringiensis are a class of special genes with unique characteristics; they are silent in B. thuringiensis strains but can be over-expressed in Escherichia coli, resulting in a Cry1I-type protein with a molecular mass of approximately 81kDa. Cry1I-type protein is toxic to Lepidoptera larvae. A truncated Cry1Ie protein, IE648, which corresponds to the first 648 amino acids from the N-terminus of Cry1Ie, was purified from E. coli using Ni-NTA affinity isolation, Q-Sepharose Fast Flow chromatography, and Superdex-200 size-exclusion chromatography. It was determined using laboratory bioassays that the purified IE648 protein has good insecticidal activity. Heterologous competitive binding assays show that IE648 does not compete with Cry1Ac for binding to the brush border membrane vesicles of the Asian corn borer and does not compete with Cry1Ac at concentrations below a 500-fold excess of unlabeled Cry1Ac for binding to the peritrophic matrix of the insect. This result implies that IE648 may be a good candidate as part of a multiple-toxin strategy for the potential control of resistance in insect pests. The method of purification reported here is valuable for further research on the structure and function of IE648 and in evaluating the biosafety of this protein within transgenic plants.  相似文献   

12.
H Wabiko  G A Held    L A Bulla  Jr 《Applied microbiology》1985,49(3):706-708
Escherichia coli strains harboring deletion mutations of the insecticidal protoxin gene of Bacillus thuringiensis subsp. berliner 1715 were constructed. Although these strains did not produce intact protoxin, cell extracts from one of the mutants were extremely toxic to tobacco hornworm (Manduca sexta) larvae, indicating that only a part of the protoxin gene is required for insecticidal activity.  相似文献   

13.
Abstract A Bacillus thuringiensis isolate has been discovered which is toxic to the common housefly ( Musca domestica ) as well as other Diptera and Lepidoptera . Crystal δ-endotoxins purified from this isolate killed 50% of Musca larvae at a concentration of 10.2 μg/ml, and β-exotoxin was not detected. Sodium dodecyl polyacrylamide gel electrophoresis of the purified crystals revealed three protein species which were related to CryIA(b), CryIB and CryIIA toxins on the basis of immunoreactivity and amino-terminal sequence determination. Southern blot and DNA restriction analyses suggested that the strain has sequences related to one cry IA(b), one cry IIA, and two cry IIB genes.  相似文献   

14.
15.
The adsorption, desorption and anti-ultraviolet light characteristics of the protoxin from Bacillus thuringiensis strain WG-001 on montmorillonite, kaolinite, zinc oxide and rectorite were studied. The protoxin was easily adsorbed onto minerals and the adsorption reached equilibrium within 0.5–1.0 h (except for rectorite). The adsorption isotherms of protoxin at different concentrations in sodium carbonate buffer (pH 9) followed the Langmuir (R 2 >0.97) and Freundlich (R 2 >0.95) equations. The maximum amounts of protoxin adsorbed were in the order: montmorillonite>rectorite>znic oxide>kaolinite. In the range of pH from 9 to 11 (carbonate buffer), the protoxin adsorbed decreased with increasing pH. The adsorption was not significantly affected by the temperature between 5 and 45°C. Both free and adsorbed protoxin were toxic to larvae of Heliothis armigera. The LC50 value of free and adsorbed protoxin on montmorillonite, rectorite, zinc oxide and kaolinite were 14±1.16, 1.76±0.31, 2.94±0.71, 4.78±2.08 and 1.91±0.91 µg mL?1, respectively. After 1 h of ultraviolet irradiation, the LC50 of the above samples increased by 41.4, 19.3, 16.3, 125.9 and 62.3%, respectively. The desorption of adsorbed protoxin in water ranged from 30.1 to 64.9% and from 18.5 to 48.7% in carbonate buffer.  相似文献   

16.
17.
《FEMS microbiology letters》1989,59(1-2):197-201
Abstract A gene encoding a 61 kDa entomocidal (P2) protein from Bacillus thuringiensis galleriae was cloned in Escherichia coli using oligonucleotide probes corresponding to N- and C-terminal DNA sequences of a Kurstaki P2 gene. When the gene of a 5.8 kb Hin dIII fragment was transformed into B. subtilis on a shuttle vector, sporulation was completely inhibited and expression could not be detected. When B. megaterium was transformed with the same plasmid, only 10% of the cells sporulated and a 61 kDa P2 protein which cross-reacted with kurstaki P2 antiserum was synthesised. Cell lysates of the transformed B. megaterium were found to be toxic to both lepidopteran and dipteran larvae.  相似文献   

18.
The spore-forming soil bacterium Bacillus thuringiensis produces parasporal inclusion bodies composed by delta-endotoxins also known as Cry proteins, whose resistance to proteolysis, stability in highly alkaline pH and innocuity to vertebrates make them an interesting candidate to carrier of relevant epitopes in vaccines. The purpose of this study was to determine the mucosal and systemic immunogenicity in mice of Cry1Ac protoxin from B. thuringiensis HD73. Crystalline and soluble forms of the protoxin were administered by intraperitoneal or intragastric route and anti-Cry1Ac antibodies of the major isotypes were determined in serum and intestinal fluids. The two forms of Cry1Ac protoxin administered by intraperitoneal route induced a high systemic antibody response, however, only soluble Cry1Ac induced a mucosal response via intragastric. Serum antibody levels were higher than those induced by cholera toxin. Systemic immune responses were attained with doses of soluble Cry1Ac ranging from 0.1 to 100 microg by both routes, and the maximal effect was obtained with the highest doses. High anti-Cry1Ac IgG antibody levels were detected in the large and small intestine fluids from mice receiving the antigen via i.p. These data indicate that Cry1Ac is a potent systemic and mucosal immunogen.  相似文献   

19.
20.
The native crystal delta-endotoxin produced by Bacillus thuringiensis var. colmeri, serotype 21, is toxic to both lepidopteran (Pieris brassicae) and dipteran (Aedes aegypti) larvae. Solubilization of the crystal delta-endotoxin in alkaline reducing conditions and activation with trypsin and gut extracts from susceptible insects yielded a preparation whose toxicity could be assayed in vitro against a range of insect cell lines. After activation with Aedes aegypti gut extract the preparation was toxic to all of the mosquito cell lines but only one lepidopteran line (Spodoptera frugiperda), whereas an activated preparation produced by treatment with P. brassicae gut enzymes or trypsin was toxic only to lepidopteran cell lines. These in vitro results were paralleled by the results of in vivo bioassays. Gel electrophoretic analysis of the products of these different activation regimes suggested that a 130-kDa protoxin in the native crystal is converted to a 55-kDa lepidopteran-specific toxin by trypsin or P. brassicae enzymes and to a 52-kDa dipteran toxin by A. aegypti enzymes. Two-step activation of the 130-kDa protoxin by successive treatment with trypsin and A. aegypti enzymes further suggested that the 52-kDa dipteran toxin is derived from the 55-kDa lepidopteran toxin by enzymes specific to the mosquito gut. Confirmation of this suggestion was obtained by peptide mapping of these two polypeptides. The native crystal 130 kDa delta-endotoxin and the two insect-specific toxins all cross-reacted with antiserum to B. thuringiensis var. kurstaki P1 lepidopteran toxin. Preincubation of the two activated colmeri toxins with P1 antiserum neutralized their cytotoxicity to both lepidopteran and dipteran cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号