首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Protein toxins are known to translocate through intracellular membranes to reach their cytosolic targets. Results from studies with botulinum neurotoxin suggest that the toxin heavy chain functions as both a channel and a chaperone for translocation of the catalytically active light chain.  相似文献   

4.
5.
Epithelial membranes are useful and convenient tissues in whichto study fundamental processes of ionic transport. They devotea substantial fraction of their total energy resources to transport,they serve as a convenient model for plasmalemmal transport,and they have interesting properties related to hormonal regulation.The frog's skin, in particular, has been fruitful in generatingconcepts relating to the properties of serial membrane systemsand to the use of isotopic tracers in the study of transportmechanisms.  相似文献   

6.
7.
8.
《California medicine》1968,109(4):334-335
  相似文献   

9.
10.
This article highlights some of the larger and more recent metabolomics activities which are funded and organised at local (mostly national) level. While being just a snap-shot, and far from exhaustive, the details clearly illustrate the extent to which metabolomics has already become established and integrated in both basic fundamental and more applied research covering a wide range of organisms. Many national (service) centres for metabolomics already exist and additional ones are envisaged.  相似文献   

11.
Unbiased genome-wide studies of longevity in S. cerevisiae and C. elegans have led to the identification of more than one hundred genes that determine life span in one or both organisms. Key pathways have been uncovered linking nutrient and growth factor cues to longevity. Quantitative measures of the degree to which aging is evolutionary conserved are now possible. A major challenge for the future is determining which of these genes play a similar role in human aging and using that information to develop therapies toward age-associated diseases.  相似文献   

12.
Transport across plant roots   总被引:14,自引:0,他引:14  
  相似文献   

13.
14.
Recent work on inheritance systems can be divided into inclusive conceptions, according to which genetic and non-genetic inheritance are both involved in the development and transmission of nearly all animal behavioral traits, and more demanding conceptions of what it takes for non-genetic resources involved in development to qualify as a distinct inheritance system. It might be thought that, if a more stringent conception is adopted, homologies could not subsist across two distinct inheritance systems. Indeed, it is commonly assumed that homology relations cannot survive a shift between genetic and cultural inheritance systems, and substantial reliance has been placed on that assumption in debates over the phylogenetic origins of hominin behavioral traits, such as male-initiated intergroup aggression. However, in the homology literature it is widely accepted that a trait can be homologous—that is, inherited continuously in two different lineages from a single common ancestor—despite divergence in the mechanisms involved in the trait’s development in the two lineages. In this paper, we argue that even on an extremely stringent understanding of what it takes for developmental resources to form a separate inheritance system, homologies can nonetheless subsist across shifts between distinct inheritance systems. We argue that this result is a merit of this way of characterizing what it is to be an inheritance system, that it has implications for adjudicating between alternative accounts of homology, and that it offers an important cautionary lesson about how (not) to reason with the homology concept, particularly in the context of cultural species.  相似文献   

15.
16.
17.
Water transport across roots   总被引:22,自引:2,他引:20  
Usually, roots are looked at as rather perfect osmometers with the endodermis being the root membrane which is equivalent to the plasma membrane of cells. However, this single-equivalent-membrane model of the root does not explain the findings of a variable hydraulic resistance of roots as well as of differences between hydraulic and osmotic water flow and of low reflection coefficients of roots. Recent work with the root pressure probe is reviewed and discussed which indicates that the simple osmometer model of the root has to be extended by incorporating its composite structure, i.e. the fact that there are different parallel pathways for water in the root, namely, the cell-to-cell and apoplasmic path. The new composite transport model of the root readily explains the experimental findings mentioned above. Pressure probe work with roots in which the endodermis was punctured to create an additional parallel path as well as anatomical studies support the model.  相似文献   

18.
Over the past few years, ecologists have increasingly recognized the existence of strong self-reinforcing (or self-organizing) interactions within systems at a variety of scales. Positive feedback within food chains has been reported from terrestrial and aquatic ecosystems. Accumulating evidence supports the existence within communities of cooperative guilds - tit-for-tat relationships based on diffuse mutualisms and favored by environmental unpredictability. At the landscape level, both real world experience and models indicate that processes such as hydrology and the propagation of disturbance can be strongly self-reinforcing (i.e. the landscape structure supports the process, and vice versa). Hence the picture emerges of a hierarchy of self-organizing systems that span food chains, communities and landscapes/regions.  相似文献   

19.
20.
《Autophagy》2013,9(7):1159-1162
Autophagy is conserved throughout the eukaryotes and for many years, work in Saccharomyces cerevisiae has been at the forefront of autophagy research. However as our knowledge of the autophagic machinery has increased, differences between S. cerevisiae and mammalian cells have become apparent. Recent work in other organisms, such as the amoeba Dictyostelium discoideum, indicate an autophagic pathway much more similar to mammalian cells than S. cerevisiae, despite its earlier evolutionary divergence. S. cerevisiae therefore appear to have significantly specialized, and the autophagic pathway in mammals is much more ancient than previously appreciated, which has implications for how we interpret data from organisms throughout the eukaryotic tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号