首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family.  相似文献   

2.
Limb regeneration in larval and adult salamanders proceeds from a mound of mesenchymal stem cells called the limb blastema. The blastema gives rise just to those structures distal to its level of origin, and this property of positional identity is reset to more proximal values by treatment with retinoic acid. We have identified a cell surface protein, called Prod1/CD59, which appears to be a determinant of proximodistal identity. Prod1 is expressed in an exponential gradient in an adult limb as determined by detection of both mRNA and immunoreactive protein. Prod1 protein is up-regulated after treatment of distal blastemas with RA and this is particularly marked in cells of the dermis. These cells have previously been implicated in pattern formation during limb regeneration.  相似文献   

3.
The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies.  相似文献   

4.

Background

Following the amputation of a limb, newts and salamanders have the capability to regenerate the lost tissues via a complex process that takes place at the site of injury. Initially these cells undergo dedifferentiation to a state competent to regenerate the missing limb structures. Crucially, dedifferentiated cells have memory of their level of origin along the proximodistal (PD) axis of the limb, a property known as positional identity. Notophthalmus viridescens Prod1 is a cell-surface molecule of the three-finger protein (TFP) superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules.

Methodology/Principal Findings

With the aim of identifying potential orthologs of Prod1, we have solved its 3D structure and compared it to other known TFPs using phylogenetic techniques. The analysis shows that TFP 3D structures group in different categories according to function. Prod1 clusters with other cell surface protein TFP domains including the complement regulator CD59 and the C-terminal domain of urokinase-type plasminogen activator. To infer orthology, a structure-based multiple sequence alignment of representative TFP family members was built and analyzed by phylogenetic methods. Prod1 has been proposed to be the salamander CD59 but our analysis fails to support this association. Prod1 is not a good match for any of the TFP families present in mammals and this result was further supported by the identification of the putative orthologs of both CD59 and N. viridescens Prod1 in sequence data for the salamander Ambystoma tigrinum.

Conclusions/Significance

The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be correlated with the absence of the Prod1 gene.  相似文献   

5.
The Agr family genes, Ag1, Agr2, and Agr3, encode for the thioredoxin domain containing secreted proteins and are specific only for vertebrates. These proteins are attracting increasing attention due to their involvement in many physiological and pathological processes, including exocrine secretion, cancer, regeneration of the body appendages, and the early brain development. At the same time, the mode by which Agrs regulate intracellular processes are poorly understood. Despite that the receptor to Agr2, the membrane anchored protein Prod1, has been firstly discovered in Urodeles, and it has been shown to interact with Agr2 in the regenerating limb, no functional homologs of Prod1 were identified in other vertebrates. This raises the question of the mechanisms by which Agrs can regulate regeneration in other lower vertebrates. Recently, we have identified that Tfp4 (three‐fingers Protein 4), the structural and functional homolog of Prod1 in Anurans, interacts with Agr2 in Xenopus laevis embryos. In the present work we show by several methods that the activity of Tfp4 is essential for the tadpole tail regeneration as well as for the early eye and forebrain development during embryogenesis. These data show for the first time the common molecular mechanism of regeneration regulation in amphibians by interaction of Prod1 and Agr2 proteins.  相似文献   

6.
The newt Notophthalmus viridescens , which belongs to the family of salamanders (Urodela), owns remarkable regenerative capacities allowing efficient scar-free repair of various organs including the heart. Salamanders can regrow large parts of the myocardium unlike mammals, which cannot replace lost cardiomyocytes efficiently. Unfortunately, very little is known about the molecules and the regulatory circuits facilitating efficient heart regeneration in newts or salamanders. To identify proteins that are involved in heart regeneration, we have developed a pulsed SILAC-based mass spectrometry method based on the detection of paired peptide peaks after (13)C(6)-lysine incorporation into proteins in vivo. Proteins were identified by matching mass spectrometry derived peptide sequences to a recently established normalized newt EST library. Our approach enabled us to identify more than 2200 nonredundant proteins in the regenerating newt heart. Because of the pulsed in vivo labeling approach, accurate quantification was achieved for 1353 proteins, of which 72 were up- and 31 down-regulated with a (|log 2 ratio| > 1) during heart regeneration. One deregulated member was identified as a new member of the CCN protein family, showing a wound specific activation. We reason that the detection of such deregulated newt-specific proteins in regenerating hearts supports the idea of a local evolution of tissue regeneration in salamanders. Our results significantly improve understanding of dynamic changes in the complex protein network that underlies heart regeneration and provides a basis for further mechanistic studies.  相似文献   

7.
While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.  相似文献   

8.
In some vertebrates, a grave injury to the central nervous system (CNS) results in functional restoration, rather than in permanent incapacitation. Understanding how these animals mount a regenerative response by activating resident CNS stem cell populations is of critical importance in regenerative biology. Amphibians are of a particular interest in the field because the regenerative ability is present throughout life in urodele species, but in anuran species it is lost during development. Studying amphibians, who transition from a regenerative to a nonregenerative state, could give insight into the loss of ability to recover from CNS damage in mammals. Here, we highlight the current knowledge of spinal cord regeneration across vertebrates and identify commonalities and differences in spinal cord regeneration between amphibians.  相似文献   

9.
The heart has a high-metabolic rate, and its “around-the-clock” vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms—for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms. The biomedical field of regenerative medicine seeks to devise biologically inspired regenerative therapies to diseased human hearts. Falsification of the ectothermy dependency for heart regeneration hypothesis may be a crucial prerequisite to meaningfully seek inspiration in established ectothermic regenerative animal models. Otherwise, engineering approaches to construct artificial heart components may constitute a more viable path toward regenerative therapies. A more strict definition of regenerative phenomena is generated and several testable sub-hypotheses and experimental avenues are put forward to elucidate the link between heart regeneration and metabolism. Also see the video abstract here https://youtu.be/fZcanaOT5z8 .  相似文献   

10.
In contrast to mammals, salamanders have a remarkable ability to regenerate their spinal cord and recover full movement and function after tail amputation. To identify genes that may be associated with this greater regenerative ability, we designed an oligonucleotide microarray and profiled early gene expression during natural spinal cord regeneration in Ambystoma mexicanum. We sampled tissue at five early time points after tail amputation and identified genes that registered significant changes in mRNA abundance during the first 7 days of regeneration. A list of 1036 statistically significant genes was identified. Additional statistical and fold change criteria were applied to identify a smaller list of 360 genes that were used to describe predominant expression patterns and gene functions. Our results show that a diverse injury response is activated in concert with extracellular matrix remodeling mechanisms during the early acute phase of natural spinal cord regeneration. We also report gene expression similarities and differences between our study and studies that have profiled gene expression after spinal cord injury in rat. Our study illustrates the utility of a salamander model for identifying genes and gene functions that may enhance regenerative ability in mammals.  相似文献   

11.
The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration.  相似文献   

12.
The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a “critical-size defect” (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment.  相似文献   

13.
Regeneration of lost cells in the central nervous system, especially the brain, is present to varying degrees in different species. In mammals, neuronal cell death often leads to glial cell hypertrophy, restricted proliferation, and formation of a gliotic scar, which prevents neuronal regeneration. Conversely, amphibians such as frogs and salamanders and teleost fish possess the astonishing capacity to regenerate lost cells in several regions of their brains. While frogs lose their regenerative abilities after metamorphosis, teleost fish and salamanders are known to possess regenerative competence even throughout adulthood. In the last decades, substantial progress has been made in our understanding of the cellular and molecular mechanisms of brain regeneration in amphibians and fish. But how similar are the means of brain regeneration in these different species? In this review, we provide an overview of common and distinct aspects of brain regeneration in frog, salamander, and teleost fish species: from the origin of regenerated cells to the functional recovery of behaviors.  相似文献   

14.
Identification of the mechanisms underlying cellular plasticity in salamander cells is important because these may give pointers to the restricted regenerative ability of mammals. The myofibers from salamanders are remarkable for their ability to undergo cellularization and cell-cycle re-entry during regeneration. Here, we describe a detailed method for the isolation and culture of larval salamander myofibers in numbers suitable for cellular plasticity studies. The basic protocol for isolation and purification of cells can be completed in 4 h.  相似文献   

15.
16.
Achieving regeneration of the central nervous system (CNS) is a major challenge for regenerative medicine. The inability of mammals to regrow a severed CNS contrasts with the amazing regenerative powers of their deuterostome kin, the echinoderms. Rapid CNS regeneration from a specialized autotomy plane in echinoderms presents a highly tractable and suitable non-model system for regenerative biology and evolution. Starfish arm autotomy triggers mass cell migration and local proliferation, facilitating rapid CNS regeneration. Many regeneration events in nature are preceded by autotomy and there are striking parallels between autotomy and regeneration in starfish and lizards. Comparison of these systems holds promise to provide insight into regeneration deficiency in higher vertebrates and to uncover evolutionarily conserved deuterostome-chordate regenerative processes. This will help identify mechanisms that may be present but inactive in higher vertebrates to address the problem of their poor regenerative capacities and the challenge to achieve CNS repair and regrowth.  相似文献   

17.
The proximodistal identity of a newt limb regeneration blastema is respecified by exposure to retinoic acid, but its molecular basis is unclear. We identified from a differential screen the cDNA for Prod 1, a gene whose expression in normal and regenerating limbs is regulated by proximodistal location and retinoic acid: Prod 1 is the newt ortholog of CD59. Prod 1/CD59 was found to be located at the cell surface with a GPI anchor which is cleaved by PIPLC. A proximal newt limb blastema engulfs a distal blastema after juxtaposition in culture, and engulfment is specifically blocked by PIPLC, and by affinity-purified antibodies to two distinct Prod 1/CD59 peptides. Prod 1 is therefore a cell surface protein implicated in the local cell-cell interactions mediating positional identity.  相似文献   

18.
To investigate the boundaries between regenerative and non-regenerative animals, we first survey regenerative ability across animal phyla from sponges to chordates (including mammals). There are both regenerative and non-regenerative animals in each phylum. The cells participating in regeneration also vary among different species. Thus, it is hard to find clear rules concerning regeneration ability across the animal kingdom, suggesting that it is not useful to compare the difference of regenerative ability across phyla to seek the boundary between regenerative and non-regenerative animals. Instead, if we carefully compare the differences of regenerative ability between closely related species within each phylum and accumulate these differences at the cellular molecular levels, we may be able to clarify the boundary between regenerative and non-regenerative animals. Here we introduce our comparative analysis of cellular events after amputation of lower jaws between frogs and newts. Then we propose that such comparative analyses using closely related species within the same phylum should be accumulated to understand the boundary between regenerative and non-regenerative animals in order to apply this understanding for realizing regenerative medicine in the future.  相似文献   

19.
Recently much effort has resulted in papers on how stem cells can be generated from adult tissues in mice, but the salamanders do this routinely. Salamanders can regenerate most of their body parts, such as limbs, eyes, jaw, brain (and spinal cord), heart, etc. Regeneration in salamanders starts by dedifferentiation of the terminally differentiated tissues at the site of injury. The dedifferentiated cells can then differentiate to reconstitute the lost tissues. This transdifferentiation in an adult animal is unprecedented among vertebrates and does not involve recruitment of stem cells. One of the ideas is that such reprogramming of terminally differentiated cells might involve mechanisms that are similar to the maintenance of embryonic stem cells. In the stem cell field much emphasis has been recently given to the reprogramming of adult cells (such as skin fibroblasts) to revert to ES or pluripotent stem cells. It is our conviction that generation of dedifferentiated cells in salamanders and stem cells, such as the ones seen in repair in mammals share molecular signatures. This mini review will discuss these issues and ideas that could unite the stem cell biology with the classical regeneration models.  相似文献   

20.
Vision, olfaction, hearing, and balance are mediated by receptors that reside in specialized sensory epithelial organs. Age-related degeneration of the photoreceptors in the retina and the hair cells in the cochlea, caused by macular degeneration and sensorineural hearing loss, respectively, affect a growing number of individuals. Although sensory receptor cells in the mammalian retina and inner ear show only limited or no regeneration, in many nonmammalian vertebrates, these sensory epithelia show remarkable regenerative potential. We summarize the current state of knowledge of regeneration in the specialized sense organs in both nonmammalian vertebrates and mammals and discuss possible areas where new advances in regenerative medicine might provide approaches to successfully stimulate sensory receptor cell regeneration. The field of regenerative medicine is still in its infancy, but new approaches using stem cells and reprogramming suggest ways in which the potential for regeneration may be restored in individuals suffering from sensory loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号