首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Most studies in evolution are centered on how homologous genes, structures, and/or processes appeared and diverged. Although historical homology is well defined as a concept, in practice its establishment can be problematic, especially for some morphological traits or developmental processes. Metamorphosis in chordates is such an enigmatic character. Defined as a spectacular postembryonic larva-to-adult transition, it shows a wide morphological diversity between the different chordate lineages, suggesting that it might have appeared several times independently. In vertebrates, metamorphosis is triggered by binding of the thyroid hormones (THs) T(4) and T(3) to thyroid-hormone receptors (TRs). Here we show that a TH derivative, triiodothyroacetic acid (TRIAC), induces metamorphosis in the cephalochordate amphioxus. The amphioxus TR (amphiTR) mediates spontaneous and TRIAC-induced metamorphosis because it strongly binds to TRIAC, and a specific TR antagonist, NH3, inhibits both spontaneous and TRIAC-induced metamorphosis. Moreover, as in amphibians, amphiTR expression levels increase around metamorphosis and are enhanced by THs. Therefore, TH-regulated metamorphosis, mediated by TR, is an ancestral feature of all chordates. This conservation of a regulatory network supports the homology of metamorphosis in the chordate lineage.  相似文献   

2.
3.
Flatfish metamorphosis is the most dramatic post-natal developmental event in teleosts. Thyroid hormones (TH), thyroxine (T4) and 3,3??-5??-triiodothyronine (T3) are the necessary and sufficient factors that induce and regulate flatfish metamorphosis. Most of the cellular and molecular action of TH is directed through the binding of T3 to thyroid nuclear receptors bound to promoters with consequent changes in the expression of target genes. The conversion of T4 to T3 and nuclear availability of T3 depends on the expression and activity of a family of 3 selenocysteine deiodinases that activate T4 into T3 or degrade T4 and T3. We have investigated the role of deiodinases in skin and muscle metamorphic changes in halibut. We show that, both at the whole body level and at the cellular level in muscle and skin of the Atlantic halibut (Hippoglossus hippoglossus) during metamorphosis, the coordination between activating (D2) and deactivating (D3) deiodinases expression is strongly correlated with the developmental TH-driven changes. The expression pattern of D2 and D3 in cells of both skin and muscle indicate that TH are necessary for the maintenance of larval metamorphic development and juvenile cell types in these tissues. No break in symmetry occurs in the expression of deiodinases and in metamorphic developmental changes occurring both in trunk skin and muscle. The findings that two of the major tissues in both larvae and juveniles maintain their symmetry throughout metamorphosis suggest that the asymmetric changes occurring during flatfish metamorphosis are restricted to the eye and head region.  相似文献   

4.
Metamorphosis displays a striking diversity in chordates, a deuterostome phylum that comprises vertebrates, urochordates (tunicates), and cephalochordates (amphioxus). In anuran amphibians, the tadpole loses its tail, develops limbs, and undergoes profound changes at the behavioral, physiological, biochemical, and ecological levels. In ascidian tunicates, the tail is lost and the head tissues are drastically remodeled into the adult animal, whereas in amphioxus, the highly asymmetric larva transforms into a relatively symmetric adult. This wide diversity has led to the proposal that metamorphosis evolved several times independently in the different chordate lineages during evolution. However, the molecular mechanisms involved in metamorphosis are largely unknown outside amphibians and teleost fishes, in which metamorphosis is regulated by the thyroid hormones (TH) T3 and T4 binding to their receptors (thyroid hormone receptors). In this review, we compare metamorphosis in chordates and then propose a unifying definition of the larva-to-adult transition, based on the conservation of the role of THs and some of their derivatives as the main regulators of metamorphosis. According to this definition, all chordates (if not, all deuterostomes) have a homologous metamorphosis stage during their postembryonic development. The intensity and the nature of the morphological remodeling varies extensively among taxa, from drastic remodeling like in some ascidians or amphibians to more subtle events, as in mammals.  相似文献   

5.
Triiodothyroacetic acid (TRIAC) is a physiological product of triiodothyronine (T(3)) metabolism, with high affinity for T(3) nuclear receptors. Its interest stems from its potential thermogenic effects. Thus this work aimed 1) to clarify these thermogenic effects mediated by TRIAC vs. T(3) in vivo and 2) to determine whether they occurred predominantly in adipose tissues. To examine this, control rats were infused with equimolar T(3) or TRIAC doses (0.8 or 4 nmolx100 g body wt(-1) x day(-1)) or exposed for 48 h to cold. Both T(3) doses and only the highest TRIAC dose inhibited plasma and pituitary thyroid-stimulating hormone (TSH) and thyroxine (T(4)) in plasma and tissues. Interestingly, the lower TRIAC dose marginally inhibited plasma T(4). T(3) infusion increased plasma and tissue T(3) in a tissue-specific manner. The highest TRIAC dose increased TRIAC concentrations in plasma and tissues, decreasing plasma T(3). TRIAC concentrations in tissues were <10% those of T(3). Under cold exposure or high T(3) doses, TRIAC increased only in white adipose tissue (WAT). Remarkably, only the lower TRIAC dose activated thermogenesis, inducing ectopic uncoupling protein (UCP)-1 expression in WAT and maximal increases in UCP-1, UCP-2, and lipoprotein lipase (LPL) expression in brown adipose tissue (BAT), inhibiting UCP-2 in muscle and LPL in WAT. TRIAC, T(3), and cold exposure inhibited leptin secretion and mRNA in WAT. In summary, TRIAC, at low doses, induces thermogenic effects in adipose tissues without concomitant inhibition of TSH or hypothyroxinemia, suggesting a specific role regulating energy balance. This selective effect of TRIAC in adipose tissues might be considered a potential tool to increase energy metabolism.  相似文献   

6.
Thyroid hormones (THs) have pleiotropic effects on vertebrate development, with amphibian metamorphosis as the most spectacular example. However, developmental functions of THs in non-vertebrate chordates are largely hypothetical and even TH endogenous production has been poorly investigated. In order to get better insight into the evolution of the thyroid hormone signaling pathway in chordates, we have taken advantage of the recent release of the amphioxus genome. We found amphioxus homologous sequences to most of the genes encoding proteins involved in thyroid hormone signaling in vertebrates, except the fast-evolving thyroglobulin: sodium iodide symporter, thyroid peroxidase, deiodinases, thyroid hormone receptor, TBG, and CTHBP. As only some genes encoding proteins involved in TH synthesis regulation were retrieved (TRH, TSH receptor, and CRH receptor but not their corresponding receptors and ligands), there may be another mode of upstream regulation of TH synthesis in amphioxus. In accord with the notion that two whole genome duplications took place at the base of the vertebrate tree, one amphioxus gene often corresponded to several vertebrate homologs. However, some amphioxus specific duplications occurred, suggesting that several steps of the TH pathway were independently elaborated in the cephalochordate and vertebrate lineages. The present results therefore indicate that amphioxus is capable of producing THs. As several genes of the TH signaling pathway were also found in the sea urchin genome, we propose that the thyroid hormone signaling pathway is of ancestral origin in chordates, if not in deuterostomes, with specific elaborations in each lineage, including amphioxus.  相似文献   

7.
Transport of thyroid hormone across the cell membrane is required for its action and metabolism. Recently, a T-type amino acid transporter was cloned which transports aromatic amino acids but not iodothyronines. This transporter belongs to the monocarboxylate transporter (MCT) family and is most homologous with MCT8 (SLC16A2). Therefore, we cloned rat MCT8 and tested it for thyroid hormone transport in Xenopus laevis oocytes. Oocytes were injected with rat MCT8 cRNA, and after 3 days immunofluorescence microscopy demonstrated expression of the protein at the plasma membrane. MCT8 cRNA induced an approximately 10-fold increase in uptake of 10 nM 125I-labeled thyroxine (T4), 3,3',5-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3) and 3,3'-diiodothyronine. Because of the rapid uptake of the ligands, transport was only linear with time for <4 min. MCT8 did not transport Leu, Phe, Trp, or Tyr. [125I]T4 transport was strongly inhibited by L-T4, D-T4, L-T3, D-T3, 3,3',5-triiodothyroacetic acid, N-bromoacetyl-T3, and bromosulfophthalein. T3 transport was less affected by these inhibitors. Iodothyronine uptake in uninjected oocytes was reduced by albumin, but the stimulation induced by MCT8 was markedly increased. Saturation analysis provided apparent Km values of 2-5 microM for T4, T3, and rT3. Immunohistochemistry showed high expression in liver, kidney, brain, and heart. In conclusion, we have identified MCT8 as a very active and specific thyroid hormone transporter.  相似文献   

8.
9.
Do thyroid hormones function in insects?   总被引:3,自引:0,他引:3  
Earlier work demonstrated that phenoxy-phenyl compounds such as fenoxycarb and thyroxine mimicked the effects of JH III in causing a reduction in volume of the follicle cells of Locusta migratoria. While these compounds were only moderately effective, a derivative of thyroxine, 3,3',5-triiodothyronine (T3) was as effective as JH III, and T3 has been shown to bind to the same membrane receptor and activate the same pathway as JH III. The current paper shows that other thyroxine derivatives vary in activity. 3,3', 5'-Triiodothyronine (reverse T3) is inactive. 3,5-Diiodothyronine (T2) is more active than JH III, while its relatives (iodines at 3', 5' or at 3,3') are inactive. When follicles are exposed in vitro to rhodamine conjugated T3, the fluorescent compound can be seen to enter the cells and accumulate there: this process is inhibited by cycloheximide or by a temperature of 0 degrees C. The accumulation is antagonised by JH III but not JH I (which does not bind to the JH III membrane receptor) and by an antiserum raised against the putative membrane receptor protein. The action of T3, but not T2, is inhibited by 6-n-propyl-2-thiouracil or by aurothioglucose, both known to inhibit deiodinases. The activity of T3, but not of T2, increases with time of exposure to the follicle cells. These facts suggest that T3 enters the cells by receptor mediated endocytosis and is converted to a more active compound. Immunoreactivity to T3, but not thyroxine, can be detected in the haemolymph of locusts, and the titre varies slightly with the gonotrophic cycle. The food shows immunoreactivity for both thyroxine and T3. These findings suggest that thyroid hormones are ingested by locusts and have the potential to be used as hormonal signals in the control of egg production.  相似文献   

10.
Thyroid hormone (TH) actions are mediated by nuclear receptors (TRs alpha and beta) that bind triiodothyronine (T(3), 3,5,3'-triiodo-l-thyronine) with high affinity, and its precursor thyroxine (T(4), 3,5,3',5'-tetraiodo-l-thyronine) with lower affinity. T(4) contains a bulky 5' iodine group absent from T(3). Because T(3) is buried in the core of the ligand binding domain (LBD), we have predicted that TH analogues with 5' substituents should fit poorly into the ligand binding pocket and perhaps behave as antagonists. We therefore examined how T(4) affects TR activity and conformation. We obtained several lines of evidence (ligand dissociation kinetics, migration on hydrophobic interaction columns, and non-denaturing gels) that TR-T(4) complexes adopt a conformation that differs from TR-T(3) complexes in solution. Nonetheless, T(4) behaves as an agonist in vitro (in effects on coregulator and DNA binding) and in cells, when conversion to T(3) does not contribute to agonist activity. We determined x-ray crystal structures of the TRbeta LBD in complex with T(3) and T(4) at 2.5-A and 3.1-A resolution. Comparison of the structures reveals that TRbeta accommodates T(4) through subtle alterations in the loop connecting helices 11 and 12 and amino acid side chains in the pocket, which, together, enlarge a niche that permits helix 12 to pack over the 5' iodine and complete the coactivator binding surface. While T(3) is the major active TH, our results suggest that T(4) could activate nuclear TRs at appropriate concentrations. The ability of TR to adapt to the 5' extension should be considered in TR ligand design.  相似文献   

11.
1. Isolated livers from fed male rats were perfused for 2 h with T4 (L-thyroxine), T3 (L-3,3',5-tri-iodothyronine) or rT3 (L-3,3',5'-tri-iodothyronine) at different pH values (7.1--7.6) in a fully synthetic medium, whereby normal metabolic functions were maintained without addition of rat blood constituents or albumin. 2. T3 output into the medium and net T3 production reached a maximum at a pH of the medium of 7.2 and significantly decreased with alteration of the pH when livers were perfused with T4 as a substrate. 3. However, the net T4 and T3 uptake by the liver, as well as the hepatic T4 and T3 content after perfusion, were not dependent on the pH of the perfusion when livers were offered T4 or T3 as substrates respectively. 4. Determination of intracellular pH by the analysis of the distribution of the weak acid dimethyloxazolidinedione allows the conclusion that the pH optimum of iodothyronine 5'-deiodinase in the intact perfused liver corresponds to the maximum determined in vitro for the membrane-bound enzyme localized in the endoplasmic reticulum. 5. The rapid 5'-deiodination of rT3 to 3,3'-T2 (L-3,3'-di-iodothyronine), the fast disappearance of 3,3'-T2, and the fact that no net rT3 production from T4 could be detected, supports the hypothesis that in rat liver iodothyronine 5'-deiodinase activity seems to predominate over iodothyronine 5-deiodinase activity. 6. Thus the rat liver can be considered in normal physiological situations as an organ forming T3 from T4 and deiodinating rT3 originating from extrahepatic tissues, whereby the cellular iodothyronine 5'-deiodination rate is controlled by the intracellular pH.  相似文献   

12.
Thyroid hormone (TH) is required for metamorphosis of the long, coiled tadpole gut into the short frog gut. Eleutherodactylus coqui, a direct developing frog, lacks a tadpole. Its embryonic gut is a miniature adult form with a mass of yolky cells, called nutritional endoderm, attached to the small intestine. We tested the TH requirement for gut development in E. coqui. Inhibition of TH synthesis with methimazole arrested gut development in its embryonic form. Embryos treated with methimazole failed to utilize the yolk in their nutritional endoderm, and survived for weeks without further development. Conversely, methimazole and 3,3',5-tri-iodo-l-thyronine, the active form of TH, stimulated gut development and utilization and disappearance of the nutritional endoderm. In Xenopus laevis, the receptor for TH, TRβ, is upregulated in response to TH. Similarly, EcTRβ, the E. coqui ortholog, was upregulated by TH in the gut. EcTRβ expression was high in the nutritional endoderm, suggesting a direct role for TH in yolk utilization by these cells. An initial step in the breakdown of yolk in X. laevis is acidification of the yolk platelet. E. coqui embryos in methimazole failed to acidify their yolk platelets, but acidification was stimulated by TH indicating its role in an early step of yolk utilization. In addition to a conserved TH role in gut development, a novel regulatory role for TH in yolk utilization has evolved in these direct developers.  相似文献   

13.
We have described the tissue distribution and properties of thyroid hormone (TH) deiodination activities of the marine American plaice, Hippoglossoides platessoides. We then studied the 1- or 4-week responses of the plaice liver and brain deiodination activities and the plasma thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels to an intraperitoneal injection (5-500 ng/g) of the polychlorinated biphenyl (PCB) congeners 77 (3,3'-4,4'-tetrachlorobiphenyl) or 126 (3,3',4,4',5-pentachlorobiphenyl). T4 and 3,3'5'-triiodothyronine (rT3) outer-ring deiodination (ORD) activities were greater in liver than in kidney, gill, heart, brain, intestine or muscle; inner-ring deiodination (IRD) activity occurred in all tissues but was consistently higher in brain. Deiodination characteristics (optimal pH, optimal dithiothreitol concentration, responses to inhibitors and apparent Km values of 0.6-4 nM) fell in the same rage as those of low-Km deiodinases in other teleosts. Deiodination activities were maximal when assayed at 25 degrees C but uniformly low over the natural range of 0-9 degrees C. Neither PCB 77 nor PCB 126 altered brain T4ORD activity or plasma T4 levels (P < 0.05). However, at 1 week post injection hepatic T4ORD activity was increased and plasma T3 levels lowered by PCB 77 (5 and 25 ng/g), while hepatic IRD activity was increased by PCB 126 (50 and 500 ng/g). Neither PCB 77, PCB 126 nor selected hydroxylated. PCBs given in vitro compared with T4 for binding sites on plasma proteins or altered hepatic deiodination activity, indicating no direct action on plasma proteins or deiodinases We conclude that plaice TH deiodination tissue distribution and characteristics resemble those of other teleosts. Deiodination activities are low at natural assay temperatures but at 1 week show some responses to PCBs 77 and 126.  相似文献   

14.
Thyroid hormones exert a major role in growth and differentiation of almost all types of tissues in animals, particularly in amphibian metamorphosis, through its specific nuclear receptor activation followed by gene expression. However, its function in mature tropical amphibians is less studied. The present study revealed the existence of a single class of specific nuclear receptor(s) in the liver nuclei of mature tropical toad, Bufo melanostictus, with a dissociation constant of (3.7 +/- 0.9) x 10(-10) molar and maximum binding capacity of 0.074 +/- 0.013 pmol/mg DNA. The percentage of relative binding affinities for the specific nuclear L-T3 binding site in the liver nuclei of toad were L-triiodothyronine (L-T3) > triiodothyroacetic acid (TRIAC) > L-thyroxine (L-T4) = tetraiodothyroacetic acid (TETRAC) > 3,3',5'-triiodothyronine (r-T3) > Diiodothyrtonine (L-T2) (100 > 75 > 19.4 = 19.4 > 3.7 > 0.39) and the relative ED50 values (in nanomolar) were 0.33 < 0.44 < 1.7 = 1.7 < 9 < 83.  相似文献   

15.
Isolated rat renal tubules prepared by collagenase digestion were used to study the effects of 3,3',5'-tri-iodothyronine ('reverse T3', rT3) and other iodothyronines on the formation of 3,3',5-tri-iodothyronine (T3) from thyroxine (T4). rT3 inhibited the conversion with a dose response over the concentration range 1.5nM-1.5microM. The inhibition was competitive in nature. Both 3,3'-di-iodothyronine and 3',5'-di-iodothyronine also inhibited the production of T3 and T4 in isolated rat renal tubules, but tetraiodothyroacetic acid and 3,5-di-iodothyronine were found to have no effect. These experiments demonstrate in an intact cell system that some naturally occurring iodothyronines have significant effects on T4 deiodination.  相似文献   

16.
Using a T7 expression system, large amounts of the human placental c-erbA protein (h-TR beta 1) were expressed. From 1 liter of Escherichia coli culture, approximately 50-100 micrograms of purified h-TR beta 1 were obtained. Analysis of the binding data indicated that the purified h-TR beta 1 binds to 3,3',5-triiodo-L-thyronine (T3) with a Ka = 2.8 x 10(9) M-1. It binds to 3,3',5-triiodo-L-thyropropionic acid, 3,3',5-triiodo-L-thyroacetic acid, D-T3, L-thyroxine (T4), and 3',5',3-triiodo-L-thyronine with 475, 120, 39, 7, and 0.1%, respectively, of the activity of L-T3. This order of binding activity to T3 analogs is similar to that reported for the T3 nuclear receptor identified in tissues or cultured cells. Furthermore, the purified h-TR beta 1 binds to the T3 response element of the rat growth hormone gene. Thus, the purified h-TR beta 1 is active. To identify the hormone binding domain, the purified h-TR beta 1 was affinity labeled with underivatized [3',5'-125I]T4. A partial digestion by trypsin yielded a 125I-labeled 25-kDa fragment which was identified to be the domain Phe240-Asp456 by amino acid sequencing. Thus, the purified h-TR beta 1 appears suitable for other structural and functional studies.  相似文献   

17.
5'-Nucleotidase was measured in isolated fat cells from normal, hypothyroid and hyperthyroid rats. This was done to find out whether thyroid hormones had an effect on the production of adenosine by the fat cell. The results showed that 5'-nucleotidase is modified when the rats received injections of 3,3',5-triiodo-L-thyronine (T3). There was no change in the enzyme in hypothyroidism or when T3 was added to incubation of cells.  相似文献   

18.
1H NMR data of a series of thyroid hormone analogues, e.g., thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), 3,3'-diiodothyronine (3,3'-T2), 3,5-diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), 3-monoidothyronine (3-T1), 3'-monoiodothyronine (3'-T1), and thyronine (TO) in dimethylsulfoxide (DMSO) have been obtained on a 300 MHz spectrometer. The chemical shift and coupling constant are determined and tabulated for each aromatic proton. The inner tyrosyl ring protons in T4, T3, and 3,5-T2 have downfield chemical shifts with respect to those of the outer phenolic ring protons. Four-bond cross-ring coupling has been observed in all the monoiodinated rings. However, this long-range coupling does not exist in T4, diiodinated on both rings, and T0, containing no iodines on the rings. There is no evidence that at 30 degrees C these iodothyronines have any motional constraint in DMSO solution. In addition to identification of the hormones, the potential use of some characteristic peaks as probes in binding studies is discussed.  相似文献   

19.
20.
We measured rates of oxidative metabolism of two tetrachlorobiphenyl (TCB) congeners by hepatic microsomes of two marine mammal species, beluga whale and pilot whale, as related to content of selected cytochrome P450 (CYP) forms. Beluga liver microsomes oxidized 3,3',4,4'-TCB at rates averaging 21 and 5 pmol/min per mg for males and females, respectively, while pilot whale samples oxidized this congener at 0.3 pmol/min per mg or less. However, rates of 3,3',4,4'-TCB metabolism correlated with immunodetected CYP1A1 protein content in liver microsomes of both species. The CYP1A inhibitor alpha-naphthoflavone inhibited 3,3',4,4'-TCB metabolism by 40% in beluga, supporting a role for a cetacean CYP1A as a catalyst of this activity. Major metabolites of 3,3',4,4'-TCB generated by beluga liver microsomes were 4-OH-3,3',4',5-TCB and 5-OH-3,3',4,4'-TCB (98% of total), similar to metabolites formed by other species CYP1A1, and suggesting a 4,5-epoxide-TCB intermediate. Liver microsomes of both species metabolized 2,2',5,5'-TCB at rates of 0.2-1.5 pmol/min per mg. Both species also expressed microsomal proteins cross-reactive with antibodies raised against some mammalian CYP2Bs (rabbit; dog), but not others (rat; scup). Whether CYP2B homologues occur and function in cetaceans is uncertain. This study demonstrates that PCBs are metabolized to aqueous-soluble products by cetacean liver enzymes, and that in beluga, rates of metabolism of 3,3',4,4'-TCB are substantially greater than those of 2,2',5,5'-TCB. These directly measured rates generally support the view that PCB metabolism plays a role in shaping the distribution patterns of PCB residues found in cetacean tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号