首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models describing the light response of photosynthetic electron transport rate (ETR) are routinely used to determine how light absorption influences energy, reducing power and yields of primary productivity; however, no single model is currently able to provide insight into the fundamental processes that implicitly govern the variability of light absorption. Here we present development and application of a new mechanistic model of ETR for photosystem II based on the light harvesting (absorption and transfer to the core ‘reaction centres’) characteristics of photosynthetic pigment molecules. Within this model a series of equations are used to describe novel biophysical and biochemical characteristics of photosynthetic pigment molecules and in turn light harvesting; specifically, the eigen-absorption cross-section and the minimum average lifetime of photosynthetic pigment molecules in the excited state, which describe the ability of light absorption of photosynthetic pigment molecules and retention time of excitons in the excited state but are difficult to be measured directly. We applied this model to a series of previously collected fluorescence data and demonstrated that our model described well the light response curves of ETR, regardless of whether dynamic down-regulation of PSII occurs, for a range of photosynthetic organisms (Abies alba, Picea abies, Pinus mugo and Emiliania huxleyi). Inherent estimated parameters (e.g. maximum ETR and the saturation irradiance) by our model are in very close agreement with the measured data. Overall, our mechanistic model potentially provides novel insights into the regulation of ETR by light harvesting properties as well as dynamical down-regulation of PSII.  相似文献   

2.
Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence of different mechanisms of photoprotection and regulation based on xanthophyll binding to Lhc proteins into multiple sites and the exchange of chromophores between different Lhc proteins during exposure of plants to high light stress and the operation of the xanthophyll cycle. The use of recombinant Lhc proteins has revealed up to four binding sites in members of Lhc families with distinct selectivity for xanthophyll species which are here hypothesised to have different functions. Site L1 is selective for lutein and is here proposed to be essential for catalysing the protection from singlet oxygen by quenching chlorophyll triplets. Site L2 and N1 are here proposed to act as allosteric sites involved in the regulation of chlorophyll singlet excited states by exchanging ligand during the operation of the xanthophyll cycle. Site V1 of the major antenna complex LHC II is here hypothesised to be a deposit for readily available substrate for violaxanthin de-epoxidase rather than a light harvesting pigment. Moreover, xanthophylls bound to Lhc proteins can be released into the lipid bilayer where they contribute to the scavenging of reactive oxygen species produced in excess light. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Microalgal productivity was examined using both a wild type and a phycocyanin-deficient mutant of Synechocystis PCC 6714 (PD-1). The culture was conducted at various light intensities under low and high cell densities in a continuous culture system. At low light intensity, photosynthetic productivity was almost the same for both low and high cell densities. However, at higher light intensities photosynthetic productivity was higher in mutant PD-1 than in the wild type. At 2000 μmol photon m−2 s−1 the productivity was 50% higher in mutant PD-1. This result is consistent with our first report (Nakajima & Ueda, 1997), which showed that photosynthetic productivity can be improved by reducing the light harvesting pigment content in high cell density cultures at high light intensities. It is concluded that the technology for reducing LHP content is a useful method for improving photosynthetic productivity in algal mass production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The biochemical, biophysical, and physiological properties of the PsbS protein were studied in relation to mutations of two symmetry-related, lumen-exposed glutamate residues, Glu-122 and Glu-226. These two glutamates are targets for protonation during lumen acidification in excess light. Mutation of PsbS did not affect xanthophyll cycle pigment conversion or pool size. Plants containing PsbS mutations of both glutamates did not have any rapidly inducible nonphotochemical quenching (qE) and had similar chlorophyll fluorescence lifetime components as npq4-1, a psbS deletion mutant. The double mutant also lacked a characteristic leaf absorbance change at 535 nm (DeltaA535), and PsbS from these plants did not bind dicyclohexylcarbodiimide (DCCD), a known inhibitor of qE. Mutation of only one of the glutamates had intermediate effects on qE, chlorophyll fluorescence lifetime component amplitudes, DCCD binding, and DeltaA535. Little if any differences were observed comparing the two single mutants, suggesting that the glutamates are chemically and functionally equivalent. Based on these results a bifacial model for the functional interaction of PsbS with photosystem II is proposed. Furthermore, based on the extent of qE inhibition in the mutants, photochemical and nonphotochemical quenching processes of photosystem II were associated with distinct chlorophyll fluorescence life-time distribution components.  相似文献   

5.
The comparative study of photosynthetic regulation in the thylakoid membrane of different phylogenetic groups can yield valuable insights into mechanisms, genetic requirements and redundancy of regulatory processes. This review offers a brief summary on the current understanding of light harvesting and photosynthetic electron transport regulation in different photosynthetic eukaryotes, with a special focus on the comparison between higher plants and unicellular algae of secondary endosymbiotic origin. The foundations of thylakoid structure, light harvesting, reversible protein phosphorylation and PSI-mediated cyclic electron transport are traced not only from green algae to vascular plants but also at the branching point between the “green” and the “red” lineage of photosynthetic organisms. This approach was particularly valuable in revealing processes that (1) are highly conserved between phylogenetic groups, (2) serve a common physiological role but nevertheless originate in divergent genetic backgrounds or (3) are missing in one phylogenetic branch despite their unequivocal importance in another, necessitating a search for alternative regulatory mechanisms and interactions.  相似文献   

6.
A new channel of excitation energy deactivation in bacterial light harvesting was recently discovered, which leads to carotenoid triplet population on an ultrafast timescale. Here we show that this mechanism is also active in LH2 of Rhodopseudomonas acidophila through analysis of transient absorption data with an evolutionary target analysis. The algorithm offers flexible testing of kinetic network models with low a priori knowledge requirements. It applies universally to the simultaneous fitting of target state spectra and rate constants to time-wavelength-resolved data. Our best-fit model reproduces correctly the well-known cooling and decay behavior in the S(1) band, but necessitates an additional, clearly distinct singlet state that does not exchange with S(1), promotes ultrafast triplet population and participates in photosynthetic energy transfer.  相似文献   

7.
The photosynthetic unit of Rhodopseudomonas viridis contains a reaction centre (P960) and a light harvesting complex (B1015). Immune electron microscopy combined with image processing has allowed the central core of the photosynthetic unit to be identified as the reaction centre and the surrounding protein ring as the light harvesting complex. This light harvesting complex, subdivided into twelve subunits was shown to contain 24 bacteriochlorophyll b molecules. A model is presented which may account for the far red shift of the Qy absorption of the bacteriochlorophyll b molecules in vivo.  相似文献   

8.
By dynamic changes in protein structure and function, the photosynthetic membranes of plants are able to regulate the partitioning of absorbed light energy between utilization in photosynthesis and photoprotective non-radiative dissipation of the excess energy. This process is controlled by features of the intact membrane, the transmembrane pH gradient, the organization of the photosystem II antenna proteins and the reversible binding of a specific carotenoid, zeaxanthin. Resonance Raman spectroscopy has been applied for the first time to wild type and mutant Arabidopsis leaves and to intact thylakoid membranes to investigate the nature of the absorption changes obligatorily associated with the energy dissipation process. The observed changes in the carotenoid Resonance Raman spectrum proved that zeaxanthin was involved and indicated a dramatic change in zeaxanthin environment that specifically alters the pigment configuration and red-shifts the absorption spectrum. This activation of zeaxanthin is a key event in the regulation of light harvesting.  相似文献   

9.
Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations approximately 20 A apart. X-ray scattering from chlorosomes exhibited a feature with the same approximately 20 A spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly.  相似文献   

10.
A gene required for the short-term regulation of photosynthetic light harvesting (the state transition) has been identified in the cyanobacterium Synechocystis sp. PCC6803. The open reading frame is designated sll1926 in the complete Synechocystis gene sequence. The deduced amino acid sequence has no homologues in current sequence databases and no recognizable sequence motifs. It encodes a putative integral membrane protein of 16 kDa, which we have designated RpaC (regulator of phycobilisome association C). Fluorescence measurements of an insertional inactivation mutant of rpaC (Deltasll1926) show that it is specifically unable to perform state transitions. Deltasll1926 has approximately wild-type levels of PS1, PS2 and phycobilisomes. Measurements of oxygen evolution and uptake show Deltasll1926 to have no deficiency in electron transport rates. In vitro [gamma-32P]-ATP labelling experiments suggest that RpaC is not the 15 kDa membrane phosphoprotein previously implicated in state transitions. Deltasll1926 grows more slowly than the wild type only at very low light intensities.  相似文献   

11.
Underwater light is spatially as well as temporally variable and directly affects phytoplankton growth and competition. Here we systematically (following the guidelines of PRISMA‐EcoEvo) searched and screened the published literature resulting in 640 individual articles. We mapped the conducted research for the objectives of (1) phytoplankton fundamental responses to light, (2) effects of light on the competition between phytoplankton species, and (3) effects of climate‐change‐induced changes in the light availability in aquatic ecosystems. Among the fundamental responses of phytoplankton to light, the effects of light intensity (quantity, as measure of total photon or energy flux) were investigated in most identified studies. The effects of the light spectrum (quality) that via species‐specific light absorbance result in direct consequences on species competition emerged more recently. Complexity in competition arises due to variability and fluctuations in light which effects are sparsely investigated on community level. Predictions regarding future climate change scenarios included changes in in stratification and mixing, lake and coastal ocean darkening, UV radiation, ice melting as well as light pollution which affect the underwater light‐climate. Generalization of consequences is difficult due to a high variability, interactions of consequences as well as a lack in sustained timeseries and holistic approaches. Nevertheless, our systematic literature map, and the identified articles within, provide a comprehensive overview and shall guide prospective research.  相似文献   

12.
Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been employed in studying the structural information of various biological systems, particularly in systems without high-resolution structural information available. In this report, we briefly present some principles and biological applications of neutron scattering and DLS, compare the differences in information that can be obtained with small-angle X-ray scattering (SAXS), and then report recent studies of SANS and DLS, together with other biophysical approaches, for light-harvesting antenna complexes and reaction centers of purple and green phototrophic bacteria.  相似文献   

13.
14.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

15.
Vibrational dynamics of the excited state in the light-harvesting complex (LH1) have been investigated by femtosecond stimulated Raman spectroscopy (FSRS). The native and reconstituted LH1 complexes have same dynamics. The ν(1) (C=C stretching) vibrational mode of spirilloxanthin in LH1 shows ultrafast high-frequency shift in the S(1) excited state with a time constant of 0.3 ps. It is assigned to the vibrational relaxation of the S(1) state following the internal conversion from the photoexcited S(2) state.  相似文献   

16.
All known phycobiliproteins have light-harvesting roles during photosynthesis and are found in water-soluble phycobilisomes, the light-harvesting complexes of cyanobacteria, cyanelles, and red algae. Phycobiliproteins are chromophore-bearing proteins that exist as heterodimers of alpha and beta subunits, possess a number of highly conserved amino acid residues important for dimerization and chromophore binding, and are invariably 160 to 180 amino acids long. A new and unusual group of proteins that is most closely related to the allophycocyanin members of the phycobiliprotein superfamily has been identified. Each of these proteins, which have been named allophycocyanin-like (Apl) proteins, apparently contains a 28-amino-acid extension at its amino terminus relative to allophycocyanins. Apl family members possess the residues critical for chromophore interactions, but substitutions are present at positions implicated in maintaining the proper alpha-beta subunit interactions and tertiary structure of phycobiliproteins, suggesting that Apl proteins are able to bind chromophores but fail to adopt typical allophycocyanin conformations. AplA isolated from the cyanobacterium Fremyella diplosiphon contained a covalently attached chromophore and, although present in the cell under a number of conditions, was not detected in phycobilisomes. Thus, Apl proteins are a new class of photoreceptors with a different cellular location and structure than any previously described members of the phycobiliprotein superfamily.  相似文献   

17.
Efficient light harvesting through carotenoids   总被引:6,自引:3,他引:3  
We review the factors that control the efficiency of carotenoid-chlorophyll excitation transfer in photosynthetic light harvesting. For this we summarize first the recently developed theory that describes electronic couplings between carotenoids and chlorophylls and we outline in particular the influence of length of conjugated system and of symmetry breaking on the couplings. We focus hereby on the structurally solved lycopene-BChl system of LH 2 from Rhodospirillum molischianum and the peridinin-Chl a system of PCP from Amphidinium carterae. In addition, we review recent spectroscopic data for neurosporene, spheroidene and lycopene, three carotenoids with different lengths of conjugated systems. On the basis of the measured energies, emission lineshapes, solution and protein environment lifetimes for their 2A g and 1Bu + states as well as of the theoretically determined couplings, we conclude that the transfer efficiencies from the 2Ag state are controlled by the Car(2Ag )–BChl(Qg) electronic couplings and the 2Ag → 1Ag internal conversion rates. We suggest that symmetry breaking and geometry rather than length of conjugated system dominate couplings involving the 2Ag state. Differences in transfer efficiencies from the 1Bu + state in LH 2 and PCP are found to be dominated by the differences in spectral overlap. The role of the 1Bu + state is likely to be influenced by a lower-lying (in longer polyenes), optically forbidden 1Bu state. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
A peripheral light-harvesting complex from the aerobic purple bacterium Roseobacter (R.) denitrificans was purified and its photophysical properties characterized. The complex contains two types of pigments, bacteriochlorophyll (BChl) a and the carotenoid (Car) spheroidenone and possesses unique spectroscopic properties. It appears to lack the B850 bacteriochlorophyll a Q(y) band that is typical for similar light-harvesting complex 2 antennas. Circular dichroism and low temperature steady-state absorption spectroscopy revealed that the B850 band is present but is shifted significantly to shorter wavelengths and overlaps with the B800 band at room temperature. Such a spectral signature classifies this protein as a member of the light-harvesting complex 4 class of peripheral light-harvesting complexes, along with the previously known light-harvesting complex 4 from Rhodopseudomonas palustris. The influence of the spectral change on the light-harvesting ability was studied using steady-state absorption, fluorescence, circular dichroism, femtosecond and microsecond time-resolved absorption and time-resolved fluorescence spectroscopies. The results were compared to the properties of the similar (in pigment composition) light-harvesting complex 2 from aerobically grown Rhodobacter sphaeroides and are understood within the context of shared similarities and differences and the putative influence of the pigments on the protein structure and its properties.  相似文献   

19.
20.
Inhibition of photosynthetic reactions by light   总被引:8,自引:0,他引:8  
Beate Barényi  G. H. Krause 《Planta》1985,163(2):218-226
Illumination of isolated intact chloroplasts of Spinacia oleracea L. for 10 min with 850 W m-2 red light in the absence of substrate levels of bicarbonate caused severe inhibition of subsequently measured photosynthetic activities. The capacity of CO2-dependent O2 evolution and of non-cyclic electron transport were impaired to similar degrees. This photoinactivation was prevented by addition of bicarbonate which allowed normal carbon metabolism to proceed during preillumination. Photoinhibition of electron transport was observed likewise upon illumination of intact or broken chloroplasts when efficient electron acceptors were absent. Addition of uncouplers did not influence the extent of inhibition. Studies of partial electron-transport reactions indicated that the activity of both photosystems was affected by light. In addition, the water-oxidation system or its connection to photosystem II seemed to be impaired. Preillumination did not cause uncoupling of photophosphorylation. Chlorophyll-fluorescence data obtained at room temperature and at 77 K are consistent with the view that photosystem-II reaction centers were altered. Addition of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) or 1,4-diazabicyclo(2,2,2)octane to isolated thylakoids prior to preillumination substantially diminished photoinhibition. This result shows that reactive oxygen species were involved in the damage. It is concluded that bright light, which normally does not damage the photosynthetic apparatus, may exert the described destructive effects under conditions that restrict metabolic turnover of photosynthetic energy.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSI photosystem I - PSII photosystem II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号