首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heat emitted during non-radiative de-excitation was determined in vivo by the photoacoustic method. The dependence of the photoacoustic signal on the length of the pulses (modulation frequency) of the excitation light and the effect of continuous light, which saturates photosynthesis but does not directly contribute to the signal, are described. The induction kinetic of heat emission measured with intact leaves differed only slightly from the induction kinetic of fluorescence (Kautsky effect) detected in parallel. The photoacoustic signal at high modulation frequencies (279 Hz), which represents the signal of heat emission, and the photoacoustic signal at low modulation frequencies (17 Hz), interpreted as a signal of pulsed oxygen evolution superimposed on the heat emission, were measured with leaves before and after photoinhibition. It was demonstrated that after photoinhibition the decrease in fluorescence yield and in photosynthetic activity (here detected as photoacoustic signal at 17 Hz) are paralleled by an increase in the yield of non-radiative deexcitation (photoacoustic signal at 279 Hz). The increase of heat emission, which has been hypothized for photoinhibited leaves, could now be proved by measuring the induction kinetics of the photoacoustic signal.  相似文献   

3.
When the fluorescence intensity of a chromophore attached to or bound in an enzyme relates to a specific reactive step in the enzymatic reaction, a single molecule fluorescence study of the process reveals a time sequence in the fluorescence emission that can be analyzed to derive kinetic and mechanistic information. Reports of various experimental results and corresponding theoretical studies have provided a basis for interpreting these data and understanding the methodology. We have found it useful to parallel experiments with Monte Carlo simulations of potential models hypothesized to describe the reaction kinetics. The simulations can be adapted to include experimental limitations, such as limited data sets, and complexities such as dynamic disorder, where reaction rates appear to change over time. By using models that are known a priori, the simulations reveal some of the challenges of interpreting finite single-molecule data sets by employing various statistical signatures that have been identified.  相似文献   

4.
The fluorescent probe laurdan has been shown to be sensitive to the vesicle-to-micelle transition of phosphatidylcholine/octylglucoside (M. Paternostre, O. Meyer, C. Grabielle-Madelmont, S. Lesieur, and, Biophys. J. 69:2476-2488). On the other hand, a study on the photophysics of laurdan in organic solvents has shown that the complex de-excitation pathway of the probe can be described by two successive processes, i.e., an intramolecular charge transfer followed by dielectric relaxation of the solvent if polar. These two excited-state reactions lead to three emitting states, i.e., a locally excited state, a charge transfer state, and a solvent relaxed state (M. Viard, J. Gallay, M. Vincent, B. Robert and, Biophys. J. 73:2221-2234). Experiments have been performed using time-resolved fluorescence on the probe inserted in amphiphile aggregates (mixed liposomes, mixed micelles) different in detergent-to-lipid ratios. The results have been compared with those obtained for laurdan inserted in dipalmitoyl phosphatidylcholine liposomes in the gel and in the fluid lamellar phase. Except for laurdan in dipalmitoyl phosphatidylcholine liposomes in the gel lamellar phase, the red part of the emission spectra originates from the de-excitation of the relaxed excited state of laurdan, indicating that indeed the dielectric relaxation process is an important phenomena in the ground-state return pathway of this probe. On the other hand, the maximization entropy method (MEM) analysis of the fluorescence decay recorded in the blue part of the emission spectra indicates that the dielectric relaxation is not the only reaction occurring to the excited state of laurdan. Moreover, the analysis of the fluorescence decays of laurdan inserted in gel lamellar dipalmitoylphosphatidylcholine (DPPC) liposomes indicates excited-state reactions, although dielectric relaxation is impossible. These results are in agreement with the de-excitation pathway determined from laurdan behavior in organic solvent even if, in most of the aggregates studied in this work, the major phenomenon is the dielectric relaxation of the solvent. All along the vesicle-to-micelle transition, we have observed that the lifetime of the relaxed excited state of laurdan continuously decreases probably due to a dynamic quenching process by water molecules. On the other hand, the time constant of the dielectric relaxation process remains almost unchanged in the lamellar part of the transition but abruptly decreases as soon as the first mixed micelle is formed. This decrease is continuous all over the rest of the transition even if it is more pronounced in the mixed liposomes' and mixed micelles' coexistence. The increase of the octylglucoside-to-lipid ratio of the mixed micelles via the change of the size and the shape of the aggregates may facilitate the penetration and the mobility of water molecules. Therefore, during the vesicle-to-micelle transition, laurdan probes the evolution of both the amphiphile packing in the aggregates and the increase of the interface polarity. This study finally shows that the detergent-to-lipid ratio of the mixed micelles is an important parameter to control to limit the penetration and the mobility of water within the amphiphile aggregates and that laurdan is a nice tool to monitor this phenomenon.  相似文献   

5.
The fluorescent dye 4′-6-Diamidino-2-phenylindole (DAPI) is frequently used in fluorescence microscopy as a chromosome and nuclear stain because of its high specificity for DNA. Normally, DAPI bound to DNA is maximally excited by ultraviolet (UV) light at 358 nm, and emits maximally in the blue range, at 461 nm. Hoechst dyes 33258 and 33342 have similar excitation and emission spectra and are also used to stain nuclei and chromosomes. It has been reported that exposure to UV can convert DAPI and Hoechst dyes to forms that are excited by blue light and emit green fluorescence, potentially confusing the interpretation of experiments that use more than one fluorochrome. The work reported here shows that these dyes can also be converted to forms that are excited by green light and emit red fluorescence. This was observed both in whole tissues and in mitotic chromosome spreads, and could be seen with less than 10-s exposure to UV. In most cases, the red form of fluorescence was more intense than the green form. Therefore, appropriate care should be exercised when examining tissues, capturing images, or interpreting images in experiments that use these dyes in combination with other fluorochromes.  相似文献   

6.
Light-induced heat produced by the non-radiative decay represents one way of de-excitation after excitation by light absorption. It was detected in vivo with cotyledons of radish seedlings (Raphanus sativus L.) by measuring the photoacoustic signal at a modulation frequency of 279 Hz. During the induction kinetic of photosynthesis the photoacoustic signal, the chlorophyll fluorescence as well as the photochemical and the non-photochemical quenching of fluorescence were simultaneously determined in order to get information about the correlation of heat production, fluorescence and its quenching mechanisms. Our results demonstrate that the changes of the photoacoustic signal can in most cases be related directly or indirectly to changes in the photochemical activity. However the kinetic of the photoacoustic signal differs from that of the fluorescence and from that of the non-photochemical quenching. This indicates that the sum of energy dissipation processes resulting in the production of light-induced heat and measured by the high-frequency photoacoustic signal must be taken into account when judging photosynthetic activity.Abbreviations LED light-emitting diode - PA photoacoustic - PAM pulse-amplitude-modulated  相似文献   

7.
Kaori Ohki  Tetzuya Katoh 《Planta》1976,129(3):249-251
Summary When cells of Anabaena variabilis, all the phycobilin pigments of which had been newly synthesized in the dark, were excited by light absorbed in phycocyanin, the fluorescence emission spectrum showed a peak corresponding to the emission from allophycocyanin, but no emission from chlorophyll. These cells were active in photosynthesis and, when excited by light absorbed by chlorophyll, the emitted fluorescence was characteristic of photosystem II chlorophyll. This indicates that dark synthesized phycocyanin is capable of excitation transfer to allophycocyanin but not to photosystem II chlorophyll.Abbreviation CMU 3-(p-chlorophenyl)-1,1-dimethylurea  相似文献   

8.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

9.
Vassiliev S  Lee CI  Brudvig GW  Bruce D 《Biochemistry》2002,41(40):12236-12243
Chlorophyll fluorescence decay kinetics in photosynthesis are dependent on processes of excitation energy transfer, charge separation, and electron transfer in photosystem II (PSII). The interpretation of fluorescence decay kinetics and their accurate simulation by an appropriate kinetic model is highly dependent upon assumptions made concerning the homogeneity and activity of PSII preparations. While relatively simple kinetic models assuming sample heterogeneity have been used to model fluorescence decay in oxygen-evolving PSII core complexes, more complex models have been applied to the electron transport impaired but more highly purified D1-D2-cyt b(559) preparations. To gain more insight into the excited-state dynamics of PSII and to characterize the origins of multicomponent fluorescence decay, we modeled the emission kinetics of purified highly active His-tagged PSII core complexes with structure-based kinetic models. The fluorescence decay kinetics of PSII complexes contained a minimum of three exponential decay components at F(0) and four components at F(m). These kinetics were not described well with the single radical pair energy level model, and the introduction of either static disorder or a dynamic relaxation of the radical pair energy level was required to simulate the fluorescence decay adequately. An unreasonably low yield of charge stabilization and wide distribution of energy levels was required for the static disorder model, and we found the assumption of dynamic relaxation of the primary radical pair to be more suitable. Comparison modeling of the fluorescence decay kinetics from PSII core complexes and D1-D2-cyt b(559) reaction centers indicated that the rates of charge separation and relaxation of the radical pair are likely altered in isolated reaction centers.  相似文献   

10.
An extension of the available kinetic theory for reactions in the transient state is presented which establishes that single-enzyme reactions may exhibit damped oscillations under the conditions of standard kinetic experiments performed by stopped-flow techniques. Such oscillations may occur for reasonable magnitudes of rate constants in the enzymic reaction mechanism and at physiological concentrations of enzyme and substrate. In the simplest reaction systems, the oscillations will be strongly damped and lead to progress curves resembling those of a reaction governed by standard exponential transients; statistical regression methods may then have to be applied for their detection and characterization. The observation that single-enzyme reactions may exhibit oscillatory behaviour points to a previously unrecognized possible source of the damped oscillations observed in metabolic systems such as the pathways of glycolysis or photosynthesis.  相似文献   

11.
In the non-heterocyst, marine cyanobacterium Trichodesmium nitrogen fixation is confined to the photoperiod and occurs coevally with oxygenic photosynthesis although nitrogenase is irreversibly inactivated by oxygen. In previous studies it was found that regulation of photosynthesis for nitrogen fixation involves Mehler reaction and various activity states with reversible coupling of photosynthetic components. We now investigated these activity states in more detail. Spectrally resolved fluorescence kinetic measurements of single cells revealed that they were related to alternate uncoupling and coupling of phycobilisomes from and to the photosystems, changing the effective cross-section of PSII. Therefore, we isolated and purified the phycobiliproteins of Trichodesmium via ion exchange chromatography and recorded their UV/VIS absorption, fluorescence excitation and fluorescence emission spectra. After describing these spectra by mathematical equations via the Gauss-Peak-Spectra method, we used them to deconvolute the in vivo fluorescence spectra of Trichodesmium cells. This revealed that the contribution of different parts of the phycobilisome antenna to fluorescence quenching changed during the daily activity cycle, and that individual phycobiliproteins can be reversibly coupled to the photosystems, while the expression levels of these proteins did not change much during the daily activity cycle. Thus we propose that variable phycobilisome coupling plays a key role in the regulation of photosynthesis for nitrogen fixation in Trichodesmium.  相似文献   

12.
Frank HA  Bautista JA  Josue JS  Young AJ 《Biochemistry》2000,39(11):2831-2837
The xanthophyll cycle is an enzymatic, reversible process through which the carotenoids violaxanthin, antheraxanthin, and zeaxanthin are interconverted in response to the need to balance light absorption with the capacity to use the energy to drive the reactions of photosynthesis. The cycle is thought to be one of the main avenues for safely dissipating excitation energy absorbed by plants in excess of that needed for photosynthesis. One of the key factors needed to elucidate the molecular mechanism by which the potentially damaging excess energy is dissipated is the energy of the lowest excited singlet (S(1)) state of the xanthophyll pigments. Absorption from the ground state (S(0)) to S(1) is forbidden by symmetry, making a determination of the S(1) state energies of these molecules by absorption spectroscopy very difficult. Fluorescence spectroscopy is potentially the most direct method for obtaining the S(1) state energies. However, because of problems with sample purity, low emission quantum yields, and detection sensitivity, fluorescence spectra from these molecules, until now, have never been reported. In this work these technical obstacles have been overcome, and S(1) --> S(0) fluorescence spectra of violaxanthin and zeaxanthin are presented. The energies of the S(1) states deduced from the fluorescence spectra are 14 880 +/- 90 cm(-)(1) for violaxanthin and 14 550 +/- 90 cm(-)(1) for zeaxanthin. The results provide important insights into the mechanism of nonphotochemical dissipation of excess energy in plants.  相似文献   

13.
We describe a new procedure for the analysis of time-resolved decays of fluorescence intensity. This procedure was used to resolve the emission spectra of the initially excited and solvent relaxed states of a tryptophan derivative in viscous solution. Specifically, we examined N-acetyl-l-tryptophanamide (AcTrpNH2) in viscous and nonviscous solutions of propylene glycol. Time-resolved decays of fluorescence intensity were collected at wavelengths across the emission spectra. Instead of the usual procedure of deconvolving these data with the time profile of the exciting pulse, we deconvolved these data using the response observed on the short-wavelength side of the emission. If one assumes that this emission results only from the initially excited state (F), then the nonzero decay time calculated using deconvolution is that of the solvent relaxed state (R). For our specific case of AcTrpNH2 the emission spectra of the F and R states overlap at most wavelengths longer than the short-wavelength side of the emission (310 nm). As a result, differential-wavelength deconvolution yields two lifetimes and amplitudes, one pair representing the relaxed state and the other the initially excited state. The latter appears as a zero-decay-time component whose amplitude can be readily quantified. The wavelength-dependent amplitude of this zero-lifetime component can be used to calculate the emission spectrum of the F state and. by difference, the emission spectrum of the relaxed state. For AcTrpNH2 in propylene glycol at ?20°C the emission maxima of the F and R states are near 320 and 350 nm, respectively, and the relative proportion of the emission from each state was near 50%. At lower temperatures the emission from the F state becomes dominant and at high temperatures the emission from the R state dominates. We note that this resolution of states is somewhat arbitrary because we assumed a two-state model and the absence of solvent relaxed emission at 310 nm. Nonetheless, differential-wavelength deconvolution simplifies and facilitates the analysis of time-resolved fluorescence data from samples which undergo excited state reactions. Moreover, this deconvolution procedure considerably simplifies the determination of the kinetic constants for reversible excited state reactions. The application of differential-wavelength deconvolution does not increase the time reqaired for data acquisition. This differential analysis procedure should enhance the usefulness and precision of pulse fluorometric methods in studies of nanosecond time scale processes in proteins and membranes.  相似文献   

14.
In a recent article, we described the application of phasor analysis to fluorescence intensity decay data on in vitro samples. As detailed in that article, this method provides researchers with a simple graphical method for viewing lifetime data that can be used to quantify individual components of a mixture as well as to identify excited state reactions. In the current article, we extend the use of in vitro phasor analysis to intrinsic protein fluorescence. We show how alterations in the excited state properties of tryptophan residues are easily visualized using the phasor method. Specifically, we demonstrate that protein–ligand and protein–protein interactions can result in unique shifts in the location of phasor points, indicative of protein conformational changes. Application of the method to a rapid kinetic experiment is also shown. Finally, we show that the unfolding of lysozyme with either urea or guanidine hydrochloride results in different phasor trajectories, indicative of unique denaturation pathways.  相似文献   

15.
Photosynthetic fluorescence emission spectra measurement at the temperature of 77 K (–196°C) is an often-used technique in photosynthesis research. At low temperature, biochemical and physiological processes that modulate fluorescence are mostly abolished, and the fluorescence emission of both PSI and PSII become easily distinguishable. Here we briefly review the history of low-temperature chlorophyll fluorescence methods and the characteristics of the acquired emission spectra in oxygen-producing organisms. We discuss the contribution of different photosynthetic complexes and physiological processes to fluorescence emission at 77 K in cyanobacteria, green algae, heterokont algae, and plants. Furthermore, we describe practical aspects for obtaining and presenting 77 K fluorescence spectra.  相似文献   

16.
Complexes of macromolecules that transiently self-assemble, perform a particular function, and then dissociate are a recurring theme in biology. Such systems often have a large number of possible assembly/disassembly intermediates and complex, highly branched reaction pathways. Measuring the single-step kinetic parameters in these reactions would help to identify the functionally significant pathways. We have therefore constructed a novel single-molecule fluorescence microscope capable of efficiently detecting the colocalization of multiple components in a macromolecular complex when each component is labeled using a different color fluorescent dye. In this through-objective excitation, total internal reflection instrument, the dichroic mirror conventionally used to spectrally segregate the excitation and emission pathways was replaced with small broadband mirrors. This design spatially segregates the excitation and emission pathways and thereby permits efficient collection of the spectral range of emitted fluorescence when three or more dyes are used. In a test experiment with surface-immobilized single-stranded DNA molecules, we directly monitored the time course of a hybridization reaction with three different oligonucleotides, each labeled with a different color dye. The experiment reveals which of the possible reaction intermediates were traversed by each immobilized molecule, measures the hybridization rate constants for each oligonucleotide, and characterizes kinetic interdependences of the reaction steps.  相似文献   

17.
Roettger MP  Bakhtina M  Tsai MD 《Biochemistry》2008,47(37):9718-9727
While matched nucleotide incorporation by DNA polymerase beta (Pol beta) has been well-studied, a true understanding of polymerase fidelity requires comparison of both matched and mismatched dNTP incorporation pathways. Here we examine the mechanism of misincorporation for wild-type (WT) Pol beta and an error-prone I260Q variant using stopped-flow fluorescence assays and steady-state fluorescence spectroscopy. In stopped-flow, a biphasic fluorescence trace is observed for both enzymes during mismatched dNTP incorporation. The fluorescence transitions are in the same direction as that observed for matched dNTP, albeit with lower amplitude. Assignments of the fast and slow fluorescence phases are designated to the same mechanistic steps previously determined for matched dNTP incorporation. For both WT and I260Q mismatched dNTP incorporation, the rate of the fast phase, reflecting subdomain closing, is comparable to that induced by correct dNTP. Pre-steady-state kinetic evaluation reveals that both enzymes display similar correct dNTP insertion profiles, and the lower fidelity intrinsic to the I260Q mutant results from enhanced efficiency of mismatched incorporation. Notably, in comparison to WT, I260Q demonstrates enhanced intensity of fluorescence emission upon mismatched ternary complex formation. Both kinetic and steady-state fluorescence data suggest that relaxed discrimination against incorrect dNTP by I260Q is a consequence of a loss in ability to destabilize the mismatched ternary complex. Overall, our results provide first direct evidence that mismatched and matched dNTP incorporations proceed via analogous kinetic pathways, and support our standing hypothesis that the fidelity of Pol beta originates from destabilization of the mismatched closed ternary complex and chemical transition state.  相似文献   

18.
Several studies have led to the conclusion that, in the green fluorescent protein (GFP) of the jellyfish Aequorea victoria, a photoconversion involving excited-state proton transfer occurs from an A- to a B-form, while an intermediate I-form was held responsible for the green fluorescence. Here we have identified the I-form of wild-type GFP in absorption, located the 0-0 transitions of all three forms A, B and I, and determined vibrational frequencies of the ground and excited states. The intrinsically narrow 0-0 transitions are revealed by the wavelengths at which holes can be burnt. The pathways of photointerconversion are unraveled by excitation, emission and hole-burning spectroscopy. We present an energy-level scheme that has significant implications for GFP-mutants, which likewise can occur in the three photo-interconvertible forms.  相似文献   

19.
叶绿素荧光是研究植物光合生理机制、量化植被光合作用时空格局以及准确理解气候变化背景下陆地生态系统生产力的关键。然而, 目前对于叶绿素荧光主动与被动联合观测的研究还较少。该文对比了叶绿素荧光主动观测与被动观测的优缺点, 展示了叶片尺度和冠层尺度主动与被动联合观测的仪器设备组成, 探讨了主动与被动联合观测在探索叶绿体尺度-叶片尺度-冠层尺度能量在光合、荧光以及热耗散中的分配, 阐明叶绿素荧光与总初级生产力的关联机制, 验证星基日光诱导叶绿素荧光, 解译叶绿素荧光光谱形状4个方面的应用前景。综上, 叶绿素荧光的主动与被动联合观测对于揭示各尺度上荧光与光合作用之间的关联机制, 改善全球尺度植被生产力模型至关重要。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号