首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Menkes protein (MNK) and Wilson protein (WND) are transmembrane, CPX-type Cu-ATPases with six metal binding sites (MBSs) in the N-terminal region containing the motif GMXCXXC. In cells cultured in low copper concentration MNK and WND localize to the transGolgi network but in high copper relocalize either to the plasma membrane (MNK) or a vesicular compartment (WND). In this paper we investigate the role of the MBSs in Cu-transport and trafficking. The copper transport activity of MBS mutants of MNK was determined by their ability to complement a strain of Saccharomyces cerevisiae deficient in CCC2 (ccc2), the yeast MNK/WND homologue. Mutants (CXXC to SXXS) of MBS1, MBS6, and MBSs1-3 were able to complement ccc2 while mutants of MBS4-6, MBS5-6 and all six MBS inactivated the protein. Each of the inactive mutants also failed to display Cu-induced trafficking suggesting a correlation between trafficking and transport activity. A similar correlation was found with mutants of MNK in which various MBSs were deleted, but two constructs with deletion of MBS5-6 were unable to traffic despite retaining 25% of copper transport activity. Chimeras in which the N-terminal MBSs of MNK were replaced with the corresponding MBSs of WND were used to investigate the region of the molecules that is responsible for the difference in Cu-trafficking of MNK and WND. The chimera which included the complete WND N-terminus localized to a vesicular compartment, similar to WND in elevated copper. Deletions of various MBSs of the WND N-terminus in the chimera indicate that a targeting signal in the region of MBS6 directs either WND/MNK or WND to a vesicular compartment of the cell.  相似文献   

2.
The Hah1 metallochaperone protein is implicated in copper delivery to the Menkes and Wilson disease proteins. Hah1 and the N-termini of its target proteins belong to a family of metal binding domains characterized by a conserved MT/HCXXC sequence motif. The crystal structure of Hah1 has been determined in the presence of Cu(I), Hg(II), and Cd(II). The 1.8 A resolution structure of CuHah1 reveals a copper ion coordinated by Cys residues from two adjacent Hah1 molecules. The CuHah1 crystal structure is the first of a copper chaperone bound to copper and provides structural support for direct metal ion exchange between conserved MT/HCXXC motifs in two domains. The structures of HgHah1 and CdHah1, determined to 1.75 A resolution, also reveal metal ion coordination by two MT/HCXXC motifs. An extended hydrogen bonding network, unique to the complex of two Hah1 molecules, stabilizes the metal binding sites and suggests specific roles for several conserved residues. Taken together, the structures provide models for intermediates in metal ion transfer and suggest a detailed molecular mechanism for protein recognition and metal ion exchange between MT/HCXXC containing domains.  相似文献   

3.
Reactivities of the two essential cysteine residues in the heavy metal binding motif, MTC(14)AAC(17), of the periplasmic Hg(2+)-binding protein, MerP, have been examined. While Cys-14 and Cys-17 have previously been shown to be Hg(2+)-binding residues, MerP is readily isolated in an inactive Cys-14-Cys-17 disulfide form. In vivo results demonstrated that these cysteine residues are reduced in the periplasm of Hg(2+)-resistant Escherichia coli. Denaturation and redox equilibrium studies revealed that reduced MerP is thermodynamically favored over the oxidized form. The relative stability of reduced MerP appears to be related to the lowered thiol pK(a) (5.5) of the Cys-17 side chain. Despite its much lower pK(a), the Cys-17 thiol is far less accessible than Cys-14, reacting 45 times more slowly with iodoacetamide at pH 7.5. This is reminiscent of proteins such as thioredoxin and DsbA, which contain a similar C-X-X-C motif, except in those cases the more exposed thiol has the lowered pK(a). In terms of MerP function, electrostatic attraction between Hg(2+) and the buried Cys-17 thiolate may be important for triggering the structural change that MerP has been reported to undergo upon Hg(2+) binding. Control of cysteine residue reactivity in heavy metal binding motifs may generally be important in influencing specific metal-binding properties of proteins containing them.  相似文献   

4.
Excess copper is effluxed from mammalian cells by the Menkes or Wilson P-type ATPases (MNK and WND, respectively). MNK and WND have six metal binding sites (MBSs) containing a CXXC motif within their N-terminal cytoplasmic region. Evidence suggests that copper is delivered to the ATPases by Atox1, one of three cytoplasmic copper chaperones. Attempts to monitor a direct Atox1-MNK interaction and to determine kinetic parameters have not been successful. Here we investigated interactions of Atox1 with wild-type and mutated pairs of the MBSs of MNK using two different methods: yeast two-hybrid analysis and real-time surface plasmon resonance (SPR). A copper-dependent interaction of Atox1 with the MBSs of MNK was observed by both approaches. Cys to Ser mutations of conserved CXXC motifs affected the binding of Atox1 underlining the essentiality of Cys residues for the copper-induced interaction. Although the yeast two-hybrid assay failed to show an interaction of Atox1 with MBS5/6, SPR analysis clearly demonstrated a copper-dependent binding with all six MBSs highlighting the power and sensitivity of SPR as compared with other, more indirect methods like the yeast two-hybrid system. Binding constants for copper-dependent chaperone-MBS interactions were determined to be 10-5-10-6 m for all the MBSs representing relatively low affinity binding events. The interaction of Atox1 with pairs of the MBSs was non-cooperative. Therefore, a functional difference of the MBSs in the MNK N terminus cannot be attributed to cooperativity effects or varying affinities of the copper chaperone Atox1 with the MBSs.  相似文献   

5.
Copper chaperone is an essential cytosolic factor that maintains copper homeostasis in living cells. Cytosolic metallochaperones have been recently identified in plant, yeast, rodents, and human cells. During our investigation, we found a new member of the copper chaperone family for copper/zinc superoxide dismutase, which was cloned from rats. The new copper chaperone was named rCCS (rat Copper Chaperone for Superoxide dismutase). The cDNA of rCCS was found to have a length of 1094 bp, and the protein analyzed from the cDNA was deduced to contain 274 amino acids. The amino acid sequence of rCCS consists of three domains: A metal binding domain, which has a MXCXXC motif in domain I, a homolog of the Cu/Zn SOD in domain II, and a CXC motif in domain III. The binding of rCCS to Cu/Zn SOD was analyzed by GST column binding assay, and the domain II of rCCS was found to be essential for binding to Cu/Zn SOD, which in turn activates Cu/Zn SOD.  相似文献   

6.
Wilson and Menkes diseases are genetic disorders of copper metabolism caused by mutations in the Wilson (WND) and Menkes (MNK) copper-transporting P1B-type ATPases. The N termini of these ATPases consist of six metal binding domains (MBDs). The MBDs interact with the copper chaperone Atox1 and are believed to play roles in catalysis and in copper-mediated cellular relocalization of WND and MNK. Although all six MBDs have similar folds and bind one Cu(I) ion via a conserved CXXC motif, biochemical and genetic data suggest that they have distinct functions. Most studies aimed at characterizing the MBDs have employed smaller polypeptides consisting of one or two domains. The role of each MBD is probably defined by its environment within the six-domain N terminus, however. To study the properties of the individual domains within the context of the intact Wilson N terminus (N-WND), a series of variants in which five of the six metal binding CXXC motifs are mutated to SXXS was generated. For each variant, the Cu(I) binding affinity and the ability to exchange Cu(I) with Atox1 were investigated. The results indicate that Atox1 can deliver Cu(I) to and remove Cu(I) from each MBD, that each MBD has stronger Cu(I) retention properties than Atox1, and that all of the MBDs as well as Atox1 have similar K(Cu) values of (2.2-6.3) x 10(10) m(-1). Therefore, the specific role of each MBD is not conferred by its position within the intact N-WND but may be related to interactions with other domains and partner proteins.  相似文献   

7.
The Menkes protein (MNK or ATP7A) is a transmembrane, copper-transporting CPX-type ATPase, a subgroup of the extensive family of P-type ATPases. A striking feature of the protein is the presence of six metal binding sites (MBSs) in the N-terminal region with the highly conserved consensus sequence GMXCXXC. MNK is normally located in the trans-Golgi network (TGN) but has been shown to relocalize to the plasma membrane when cells are cultured in media containing high concentrations of copper. The experiments described in this report test the hypothesis that the six MBSs are required for this copper-induced trafficking of MNK. Site-directed mutagenesis was used to convert both cysteine residues in the conserved MBS motifs to serines. Mutation of MBS 1, MBS 6, and MBSs 1-3 resulted in a molecule that appeared to relocalize normally with copper, but when MBSs 4-6 or MBSs 1-6 were mutated, MNK remained in the TGN, even when cells were exposed to 300 microM copper. Furthermore, the ability of the MNK variants to relocalize corresponded well with their ability to confer copper resistance. To further define the critical motifs, MBS 5 and MBS 6 were mutated, and these changes abolished the response to copper. The region from amino acid 8 to amino acid 485 was deleted, resulting in mutant MNK that lacked 478 amino acids from the N-terminal region, including the first four MBSs. This truncated molecule responded normally to copper. Moreover, when either one of the remaining MBS 5 and MBS 6 was mutated to GMXSXXS, the resulting proteins were localized to the TGN in low copper and relocalized in response to elevated copper. These experiments demonstrated that the deleted N-terminal region from amino acid 8 to amino acid 485 was not essential for copper-induced trafficking and that one MBS close to the membrane channel of MNK was necessary and sufficient for the copper-induced redistribution.  相似文献   

8.
Protein disulfide isomerase (PDI) is a 55 kDa multifunctional protein of the endoplasmic reticulum (ER) involved in protein folding and isomerization. In addition to the chaperone and catalytic functions, PDI is a major calcium-binding protein of the ER. Although the active site of PDI has a similar motif CXXC to the Cu-binding motif in Wilson and Menkes proteins and in other copper chaperones, there has been no report on any metal-binding capability of PDI other than calcium binding. We present evidence that PDI is a copper-binding protein. In the absence of reducing agent freshly reduced PDI can bind a maximum of 4 mol of Cu(II) and convert to Cu(I). These bound Cu(I) are surface exposed as they can be competed readily by BCS reagent, a Cu(I) specific chelator. However, when the binding is performed using the mixture of Cu(II) and 1mM DTT, the total number of Cu(I) bound increases to 10 mol/mol, and it is slower to react with BCS, indicating a more protected environment. In both cases, the copper-bound forms of PDI exist as tetramers while apo-protein is a monomer. These findings suggest that PDI plays a role in intracellular copper disposition.  相似文献   

9.
Menkes disease is an X‐linked, recessive disorder of copper metabolism that occurs in approximately 1 in 200,000 live births. The condition is characterized by skeletal abnormalities, severe mental retardation, neurologic degeneration, and patient mortality in early childhood. The symptoms of Menkes disease result from a deficiency of serum copper and copper‐dependent enzymes. A candidate gene for the disease has been isolated and designated MNK. The MNK gene codes for a P‐type cation transporting ATPase, based on homology to known P‐type ATPases and in vitro experimentation. cDNA clones of MNK in Menkes patients show diminished or absented hybridization in northern blot experiments. The Menkes protein functions to export excess intracellular copper and activates upon Cu(I) binding to the six metal‐binding repeats in the amino‐terminal domain. The loss of Menkes protein activity blocks the export of dietary copper from the gastrointestinal tract and causes the copper deficiency associated with Menkes disease. Each of the Menkes protein amino‐terminal repeats contains a conserved ‐X‐Met‐X‐Cys‐X‐X‐Cys‐ motif (where X is any amino acid). These metal‐binding repeats are conserved in other cation exporting ATPases involved in metal metabolism and in proteins involved in cellular defense against heavy metals in both prokaryotes and eukaryotes. An overview of copper metabolism in humans and a discussion of our understanding of the molecular basis of cellular copper homeostasis is presented. This forms the basis for a discussion of Menkes disease and the protein deficit in this disease. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 93–106, 1999  相似文献   

10.
Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(I) per CopZ and two copper(I) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(I)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(I)2CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(I)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper, from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(I) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange; a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.  相似文献   

11.
Wilson disease (WD) and Menkes disease (MNK) are inherited disorders of copper metabolism. The genes that mutate to give rise to these disorders encode highly homologous copper transporting ATPases. We use yeast and mammalian two-hybrid systems, along with an in vitro assay to demonstrate a specific, copper-dependent interaction between the six metal-binding domains of the WD and MNK ATPases and the cytoplasmic copper chaperone HAH1. We demonstrate that several metal-binding domains interact independently or in combination with HAH1p, although notably domains five and six of WDp do not. Alteration of either the Met or Thr residue of the HAH1p MTCXXC motif has no observable effect on the copper-dependent interaction, whereas alteration of either of the two Cys residues abolishes the interaction. Mutation of any one of the HAH1p C-terminal Lys residues (Lys(56), Lys(57), or Lys(60)) to Gly does not affect the interaction, although deletion of the 15 C-terminal residues abolishes the interaction. We show that apo-HAH1p can bind in vitro to copper-loaded WDp, suggesting reversibility of copper transfer from HAH1p to WD/MNKp. The in vitro HAH1/WDp interaction is metalospecific; HAH1 preincubated with Cu(2+) or Hg(+) but not with Zn(2+), Cd(2+), Co(2+), Ni(3+), Fe(3+), or Cr(3+) interacted with WDp. Finally, we model the protein-protein interaction and present a theoretical representation of the HAH1p.Cu.WD/MNKp complex.  相似文献   

12.
In Ralstonia metallidurans CH34, the gene merP encodes for a periplasmic mercury-binding protein which is capable of binding one mercury atom. The metal-binding site of MerP consists of the highly conserved sequence GMTCXXC found in the family that includes metallochaperones and metal-transporting ATPases. We purified MerP from R.metallidurans CH34 and solved its crystal structure under the oxidized form at 2.0A resolution. Superposition with structures of other metal-binding proteins shows that the global structure of R.metallidurans CH34 oxidized MerP follows the general topology of the whole family. The largest differences are observed with the NMR structure of oxidized Shigella flexneri MerP. Detailed analysis of the metal-binding site suggests a direct role for Y66 in stabilizing the thiolate group of C17 during the mercury-binding reaction. The metal-binding site of oxidized MerP is also similar to the metal-binding sites of oxidized copper chaperone for superoxide dismutase and Atx1, two copper-binding proteins from Saccharomyces cerevisiae. Finally, the packing of the MerP crystals suggests that F38, a well-conserved residue in the MerP family may be important in mercury binding and transfer. We propose a possible mechanism of mercury transfer between two CXXC motifs based on a transient bi-coordinated mercury intermediate.  相似文献   

13.
The interaction between azurin from Pseudomonas aeruginosa and Ag(I), Cu(II), Hg(II), was investigated as a function of protein state, i.e. apo-, reduced and oxidised azurin. Two different metal binding sites, characterized by two different spectroscopic absorbancies, were detected: one is accessible to Ag(I) and Cu(II) but not to Hg(II); the other one binds Ag(I) and Hg(II) but not copper. When added in stoichiometric amount, Ag(I) shows high affinity for the redox center of apo-azurin, to which it probably binds by the -SH group of Cys112; it can displace Cu(I) from reducedazurin, while it does not bind to the redox center of oxidizedazurin. Kinetic experiments show that Ag(I) binding to the reduced form is four times faster than binding to the apo-form. This result suggests that metal binding requires a conformational rearrangement of the active site of the azurin. Interaction of Ag(I) or Hg(II) ions to the second metal binding site, induces typical changes of UV spectrum and quenching of fluorescence emission.  相似文献   

14.
The interaction between the human copper(I) chaperone, HAH1, and one of its two physiological partners, the Menkes disease protein (ATP7A), was investigated in solution using heteronuclear NMR. The study was carried out through titrations involving HAH1 and either the second or the fifth soluble domains of ATP7A (MNK2 and MNK5, respectively), in the presence of copper(I). The copper-transfer properties of MNK2 and MNK5 are similar, and differ significantly from those previously observed for the yeast homologous system. In particular, no stable adduct is formed between either of the MNK domains and HAH1. The copper(I) transfer reaction is slow on the time scale of the NMR chemical shift, and the equilibrium is significantly shifted towards the formation of copper(I)-MNK2/MNK5. The solution structures of both apo- and copper(I)-MNK5, which were not available, are also reported. The results are discussed in comparison with the data available in the literature for the interaction between HAH1 and its partners from other spectroscopic techniques.  相似文献   

15.
Copper is an essential co-factor for several key metabolic processes. This requirement in humans is underscored by Menkes disease, an X-linked copper deficiency disorder caused by mutations in the copper transporting P-type ATPase, MNK. MNK is located in the trans-Golgi network where it transports copper to secreted cuproenzymes. Increases in copper concentration stimulate the trafficking of MNK to the plasma membrane where it effluxes copper. In this study, a Menkes disease mutation, G1019D, located in the large cytoplasmic loop of MNK, was characterized in transfected cultured cells. In copper-limiting conditions the G1019D mutant protein was retained in the endoplasmic reticulum. However, this mislocalization was corrected by the addition of copper to cells via a process that was dependent upon the copper binding sites at the N-terminal region of MNK. Reduced growth temperature and the chemical chaperone, glycerol, were found to correct the mislocalization of the G1019D mutant, suggesting this mutation interferes with protein folding in the secretory pathway. These findings identify G1019D as the first conditional mutation associated with Menkes disease and demonstrate correction of the mislocalized protein by copper supplementation. Our findings provide a molecular framework for understanding how mutations that affect the proper folding of the MNK transporter in Menkes patients may be responsive to parenteral copper therapy.  相似文献   

16.
The third metal-binding domain of the human Menkes protein (MNK3), a copper(I)-transporting ATPase, has been expressed in Escherichia coli and characterized in solution. The solution structure of MNK3, its copper(I)-binding properties, and its interaction with the physiological partner, HAH1, have been studied. MNK3 is the domain most dissimilar in structure from the other domains of the Menkes protein. This is reflected in a significant rearrangement of the last strand of the four-stranded beta-sheet when compared with the other known homologous proteins or protein domains. MNK3 is also peculiar with respect to its interaction with the copper(I) ion, as it was found to be a comparatively weak binder. Copper(I) transfer from metal-loaded HAH1 was observed experimentally, but the metal distribution was shifted toward binding by HAH1. This is at variance with what is observed for the other Menkes domains.  相似文献   

17.
The ability of several metals to inhibit dopamine beta-monooxygenase was measured and compared with their ability to compete with the binding of 64Cu to the water-soluble form of the bovine adrenal enzyme at pH 6.0. In the presence of an optimal concentration of copper (0.5 microM in the present assay system), an inhibition was observed upon addition of Hg(II), Zn(II), or Ni(II). Only a small fraction of the inhibition with these metals may be due to uncoupling of electron transport from hydroxylation. Preincubation of these metals with the Cu-depleted apoenzyme before addition of copper, revealed a stronger inhibition than if copper was added before the other metals. Hg(II), Zn(II), and Ni(II) also compete with the binding of 64Cu(II) to the protein. Hg(II) was the most effective and Ni(II) the least effective of these metals, both with respect to inhibition of the enzyme activity and to prevent the binding of 64Cu(II). Competition experiments on the binding of Zn(II) and 64Cu in the presence and absence of ascorbate, indicated i) a similar affinity of Cu(I) and Cu(II) to the native enzyme, and ii) a more rapid binding of Cu(I) than Cu(II) to the Cu-depleted and Zn-containing enzyme. Al(III), Fe(II), Mg(II), Mn(II), Co(II), Cd(II), and Pb(II) neither inhibited the enzyme activity nor competed with the binding of 64Cu(II) to the protein (Fe(II) was not tested for binding). Of those metals cited above only Cu(II)/Cu(I) was able to reactivate the apoenzyme.  相似文献   

18.
Park SJ  Jung YS  Kim JS  Seo MD  Lee BJ 《Proteins》2008,71(2):1007-1019
Helicobacter pylori CopP (HpCopP) is a putative copper binding regulatory protein composed of 66 amino acid residues. The small HpCopP protein is homologous to CopZ, encoded by the E. hirae and B. subtilis cop operons. To clarify the role of HpCopP in copper metabolism in H. pylori, we studied the structural and copper binding characteristics by NMR spectroscopy. Based on the resonance assignments, the tertiary structure of HpCopP was determined. Unlike the betaalphabetabetaalphabeta fold of the homologous CopZ, HpCopP adopts the betaalphabetabetaalpha fold. The superposition with structures of other bacterial copper binding proteins showed that the global structure of HpCopP follows the general topology of the family, regardless of absence of the C-terminal beta-strand. The Cu(I) binding property of HpCopP was well conserved like CopZs: the structural changes due to Cu(I) and Ag(I) bindings were primarily restricted to the metal binding motif (CXXC motif). On the other hand, the Cu(II) binding property of CopP was different with that of CopZ: in the absence of reducing agent, Cu(II) ion oxidized a mutant HpCopP, resulting in disulfide bond formation in the CXXC motif. The Cu(II) ion binding property was evaluated using the mutant HpCopP, in which two amino acids were artificially introduced at the C-terminus, since the reduced state of the CXXC motif was more stabile in the mutant HpCopP without a reducing agent. Here, the structure and copper binding property of HpCopP are discussed in detail.  相似文献   

19.
The cDNA, coding for the first metal-binding domain (MBD1) of Menkes protein, was cloned into the T7-system based vector, pCA. The T7 lysozyme-encoding plasmid, pLysS, is shown to be crucial for expression, suggesting that the protein is toxic to the cells. Adding copper to the growth medium did not affect the plasmid stability. MBD1 is purified in two steps with a typical yield of 12 mg.L-1. Menkes protein, a P-type ATPase, contains a sequence GMXCXSC that is repeated six times, at the N-terminus. The paired cysteine residues are involved in metal binding. MBD1 has only two cysteine residues, which can exist as free thiol groups (reduced), as a disulphide bond (oxidized) or bound to a metal ion [e.g. Cu(I)-MBD1]. These three MBD1 forms have been investigated using CD. No major spectral change was seen between the different MBD1 forms, indicating that the folding is not changed upon metal binding. A copper-bound MBD1 was also studied by EPR, and the lack of an EPR signal suggests that the oxidation state of copper bound to MBD1 is Cu(I). Cu(I) binding studies were performed by equilibrium dialysis and revealed a stoichiometry of 1 : 1 and an apparent Kd = 46 microM. Oxidized MBD1, however, is not able to bind copper. Different copper complexes were investigated for their ability to reconstitute apo-MBD1. Given the same total copper concentration CuCl43- was superior to Cu(I)-thiourea (structural analogue of metallothionein) and Cu(I)-glutathione (used at fivefold higher copper concentration) although the latter two were able to partially reconstitute apo-MBD1. Cu(II) was not able to reconstitute apo-MBD1, presumably due to Cu(II)-induced oxidation of the thiol groups. Based on our results, glutathione and/or metallothionein are likely candidates for the in vivo incorporation of copper to Menkes protein.  相似文献   

20.
Azurin, a blue copper protein from Pseudomonas aeruginosa, and several derivatives of azurin have been studied by differential scanning calorimetry. Two well-separated, irreversible transitions are observed in a scan of apoazurin under a variety of conditions, and they are assigned to distinct steps in the denaturation process. No specific structural component can be assigned to the lower temperature transition, but a "flap" structure which is found near the metal binding site may be involved. Circular dichroic spectra suggest that melting of the beta-sheet structure, the main structural motif in the native protein, occurs during the second transition. With the exceptions of the Ni(II) and p-(hydroxymercuri)benzoate derivatives, the transitions are superposed in the metalated forms, and the enthalpies of denaturation are more endothermic. By comparison with other first-row divalent transition ions and especially Zn(II), the Cu(II) derivative exhibits the most endothermic denaturation process. Along with other data, this suggests that the binding energy is greater for Cu(II). It is postulated that the selectivity for copper over zinc arises because of the irregular binding geometry offered by the folded protein. Denaturation of the Hg(II) derivative is even more endothermic, confirming that the type 1 binding site has a very great affinity for Hg(II). Finally, when substoichiometric amounts of Hg(II) are added to the apoprotein, there is evidence that a novel mercury-bridged dimer of azurin forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号