首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Separation of complex protein mixtures that have a wide dynamic range of concentration, such as plasma or serum, is a challenge for proteomic analysis. Sample preparation to remove high-abundant proteins is essential for proteomics analysis. Immunoglobulin yolk (IgY) antibodies have unique and advantageous features that enable specific protein removal to aid in the detection of low-abundant proteins and biomarker discovery. This report describes the efficiency and effectiveness of IgY microbeads in separating 12 abundant proteins from plasma with an immunoaffinity spin column or LC column. The protein separation and sample preparation process was monitored via SDS-PAGE, 2-DE, LC-MS/MS, or clinical protein assays. The data demonstrate the high specificity of the protein separation, with removal of 95-99.5% of the abundant proteins. IgY microbeads against human proteins can also selectively remove orthologous proteins of other mammals such as mouse, rat, etc. Besides the specificity and reproducibility of the IgY microbeads, the report discusses the factors that may cause potential variations in protein separation such as protein-protein interactions (known as "Interactome"), binding and washing conditions of immunoaffinity reagents, etc. A novel concept of Seppromics is introduced to address methodologies and science of protein separation in a context of proteomics.  相似文献   

2.
Strategies for removal of high abundance proteins have been increasingly utilized in proteomic studies of serum/plasma and other body fluids to enhance the detection of low abundance proteins and achieve broader proteome coverage; however, both the reproducibility and specificity of the high abundance protein depletion process still represent common concerns. Here we report a detailed evaluation of immunoaffinity subtraction performed applying the ProteomeLab IgY-12 system that is commonly used in human serum/plasma proteome characterization in combination with high resolution LC-MS/MS. Plasma samples were repeatedly processed using this approach, and the resulting flow-through fractions and bound fractions were individually analyzed for comparison. The removal of target proteins by the immunoaffinity subtraction system and the overall process was highly reproducible. Non-target proteins, including one spiked protein standard (rabbit glyceraldehyde-3-phosphate dehydrogenase), were also observed to bind to the column at different levels but also in a reproducible manner. The results suggest that multiprotein immunoaffinity subtraction systems can be readily integrated into quantitative strategies to enhance detection of low abundance proteins in biomarker discovery studies.  相似文献   

3.
The proteomic analysis of plasma and serum samples represents a formidable challenge due to the presence of a few highly abundant proteins such as albumin and immunoglobulins. Detection of low abundance protein biomarkers requires therefore either the specific depletion of high abundance proteins with immunoaffinity columns and/or optimized protein fractionation methods based on charge, size or hydrophobicity. Here we describe the depletion of seven abundant rat plasma proteins with an immunoaffinity column with coupled antibodies directed against albumin, IgG, transferrin, IgM, haptoglobin, fibrinogen and alpha1-anti-trypsin. The IgY-R7-LC2 (Beckman Coulter) column showed high specificity for the targeted proteins and was able to efficiently remove most of the albumin, IgG and transferrin from rat plasma samples as judged by Western blot analysis. Depleted rat plasma protein samples were analyzed by SELDI-TOF MS, 2D SDS-PAGE and 2D-LC and compared to non-depleted plasma samples as well as to the abundant protein fraction that was eluted from the immunoaffinity column. Analysis of the depleted plasma protein fraction revealed improved signal to noise ratios, regardless of which proteomic method was applied. However, only a small number of new proteins were observed in the depleted protein fraction. Immunoaffinity depletion of abundant plasma proteins results in the significant dilution of the original sample which complicates subsequent analysis. Most proteomic approaches require specialized sample preparation procedures during which significant losses of less abundant proteins and potential biomarkers can occur. Even though abundant protein depletion reduces the dynamic range of the plasma proteome by about 2-3 orders of magnitude, the difference between medium-abundant and low abundant plasma proteins is still in the range of 7-8 orders of magnitude and beyond the dynamic range of current proteomic technologies. Thus, exploring the plasma proteome in greater detail remains a daunting task.  相似文献   

4.
Proteomic analysis of complex samples can be facilitated by protein fractionation prior to enzymatic or chemical fragmentation combined with MS-based identification of peptides. Although aqueous soluble protein fractionation by liquid chromatography is relatively straightforward, membrane protein separations have a variety of technical challenges. Reversed-phase high performance liquid chromatography (RP-HPLC) separations of membrane proteins often exhibit poor recovery and bandwidths, and generally require extensive pretreatment to remove lipids and other membrane components. Human brain tissue lipid raft protein preparations have been used as a model system to develop RP-HPLC conditions that are effective for protein fractionation, and are compatible with downstream proteomic analytical workflows. By the use of an appropriate RP column material and operational conditions, human brain membrane raft proteins were successfully resolved by RP-HPLC and some of the protein components, including specific integral membrane proteins, identified by downstream SDS-PAGE combined with in-gel digestion, or in-solution digestion and LC-MS/MS analysis of tryptic fragments. Using the described method, total protein recovery was high, and the repeatability of the separation maintained after repeated injections of membrane raft preparations.  相似文献   

5.
In clinical and pharmaceutical proteomics, serum and plasma are frequently used for detection of early diagnostic biomarkers for therapeutic targets. Although obtaining these body fluid samples is non-invasive and easy, they contain some abundant proteins that mask other protein components present at low concentrations. The challenge in identifying serum biomarkers is to remove the abundant proteins, uncovering and enriching at the same time the low-abundance ones. The depletion strategies, however, could lead to the concomitant removal of some non-targeted proteins that may be of potential interest. In this study, we compared three different methods aimed to deplete high-abundance proteins from human serum, focusing on the identification of non-specifically bound proteins which might be eventually removed. A Cibacron blue-dye-based method for albumin removal, an albumin and IgG immunodepletion method and an immunoaffinity column (Multiple Affinity Removal System) that simultaneously removes a total of six high-abundance proteins, were investigated. The bound proteins were eluted, separated by two-dimensional gel electrophoresis and identified by Nano LC-CHIP-MS system. Flow-through fractions and bound fractions were also analysed with the ProteinChip technology SELDI-TOF-MS. Our results showed that the methods tested removed not only the targeted proteins with high efficiency, but also some non-targeted proteins. We found that the Multiple Affinity Removal Column improved the intensity of low-abundance proteins, displayed new protein spots and increased resolution. Notably, the column showed the lowest removal of untargeted proteins, proved to be the most promising depletion approach and a reliable method for serum preparation prior to proteomic studies.  相似文献   

6.
The use and applicability of silica based capillary monolithic reversed-phase columns in proteomic analysis has been evaluated by liquid chromatography-mass spectrometry (LC-MS). Chromatographic performance of the monolithic capillaries was evaluated with a tryptic digest of cytochrome C showing very good resolution and reproducibility in addition to the known advantages of a low pressure drop over a time period of 6 months. Monoliths were subsequently tested for their suitability to separate proteins and peptides from samples typically encountered in proteomic research such as in-gel digested tryptic peptide mixtures or fractions of proteolytically digested human serum. The monolithic capillaries also proved useful in the analysis of phospholipid species in bronchoalveolar lavage fluid. Compared to particle-filled conventional capillary columns, rapid and highly efficient separation of peptides and proteins was achieved using these bimodal pore size distribution columns, and good quality collision induced dissociation (CID) mass spectra were obtained on an ion trap mass spectrometer. These novel monolithic separation media are thus a promising addition to the methodological toolbox of proteomics research.  相似文献   

7.
Isotopic labeling of cysteine residues with acrylamide was previously utilized for relative quantitation of proteins by MALDI-TOF. Here, we explored and compared the application of deuterated and (13)C isotopes of acrylamide for quantitative proteomic analysis using LC-MS/MS and high-resolution FTICR mass spectrometry. The method was applied to human serum samples that were immunodepleted of abundant proteins. Our results show reliable quantitation of proteins across an abundance range that spans 5 orders of magnitude based on ion intensities and known protein concentration in plasma. The use of (13)C isotope of acrylamide had a slightly greater advantage relative to deuterated acrylamide, because of shifts in elution of deuterated acrylamide relative to its corresponding nondeuterated compound by reversed-phase chromatography. Overall, the use of acrylamide for differentially labeling intact proteins in complex mixtures, in combination with LC-MS/MS provides a robust method for quantitative analysis of complex proteomes.  相似文献   

8.
We report a new design of a fully automated, high-efficiency parallel nonsplit nanoflow capillary HPLC system, coupled on-line with linear ion trap (LTQ) and high performance nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (nanoESI LTQ-FTICR MS). The system, intended for high-throughput proteome analysis of complex protein mixtures, notably serum and plasma, consists of two reversed-phase trap columns for large volume sample injection with high speed sample loading and desalting and two reversed-phase analytical capillary columns. Through a nanoscale two-position, 10-port switching valve, the whole system is terminated by a 10 microm i.d. of nanoemitter mounted on the nanoelectrospray source in front of the sampling cone of the LTQ-FTICR MS. Gradient elution to both nanoflow-rate capillary columns is simultaneously delivered by a single HPLC system via two independent binary gradient pump systems. The parallel capillary column approach eliminates the time delays for column regeneration/equilibration since one capillary column is used for separating the sample mixtures and delivering the separated fractions to the MS, while the other capillary column is being regenerated and equilibrated. The reproducibility of retention time and peak intensity of the present automated parallel nanoflow-rate capillary HPLC system is comparable to that obtained using a single column configuration. Replicate injections of tryptic digests indicated that this system provided good reproducibility of retention time and peak area on both columns with average CV values of less than 1.08% and 7.04%, respectively. Throughput was increased to 100% for 2-h LC-MS analysis compared to the single capillary column LC-MS pipeline. Application of this system is demonstrated in a plasma proteomic study. A total of 312 868 MSMS events were acquired and 1564 proteins identified with high confidence (Protein Prophet > or = 0.9, and peptides matched > or = 2). Comparison of a series of plasma fractions run using the single-column LC-MS versus the parallel-column LC-MS demonstrated that parallel-column LC-MS system significantly reduced the sample carryover, improved MS data quality and increased the number of MS/MS sequence scan events.  相似文献   

9.
The purpose of this study was to develop techniques for identifying cancer biomarkers in human serum using differential in-gel electrophoresis (DIGE), and characterizing the protein biomarkers using tandem mass spectrometry (MS/MS). A major problem in profiling protein expression by DIGE comes from the presence of high concentrations of a small number of proteins. Therefore, serum samples were first chromatographed using an immunoaffinity HPLC column (Agilent Technologies), to selectively remove albumin, immunoglobulins, transferrin, haptoglobin, and antitrypsin. Serum samples from three individuals with pancreatic cancer and three individuals without cancer were compared. Serum samples were processed using the immunoaffinity column. Differential protein analysis was performed using DIGE. A total of 56 protein spot-features were found to be significantly increased and 43 significantly decreased in cancer serum samples. These spot features were excised, trypsin digested, and analyzed by MALDI/TOF/TOF (4700 Proteomics Analyzer, Applied Biosystems). We identified 24 unique proteins that were increased and 17 unique proteins that were decreased in cancer serum samples. Western blot analysis confirmed increased levels of several of these proteins in the pancreatic cancer serum samples. In an independent series of serum samples from 20 patients with pancreatic cancer and 14 controls, increased levels of apolipoprotein E, alpha-1-antichymotrypsin, and inter-alpha-trypsin inhibitor were found to be associated with pancreatic cancer. These results suggest that affinity column enrichment and 2-D DIGE can be used to identify numerous proteins differentially expressed in serum from individuals with pancreatic cancer.  相似文献   

10.
Microtubules play an essential role in eukaryotic cells, where they perform a wide variety of functions. In this paper, we describe the characterization of proteins associated to tubulin dimer in its native form, using affinity chromatography and mass spectrometry. We used an immunoaffinity column with coupled-monoclonal antibody directed against the alpha-tubulin C-terminus. Tubulin was first loaded onto the column, then interphase and mitotic cell lysates were chromatographed. Tubulin-binding proteins were eluted using a peptide mimicking the alpha-tubulin C-terminus. Elution fractions were analyzed by SDS-PAGE, and a total of 14 proteins were identified with high confidence by mass spectrometry. These proteins could be grouped in four classes: known tubulin-binding proteins, one microtubule-associated protein, heat shock proteins, and proteins that were not shown previously to bind tubulin dimer or microtubules.  相似文献   

11.
Gong Y  Li X  Yang B  Ying W  Li D  Zhang Y  Dai S  Cai Y  Wang J  He F  Qian X 《Journal of proteome research》2006,5(6):1379-1387
Plasma proteins may often serve as indicators of disease and are a rich source for biomarker discovery. However, the intrinsic large dynamic range of plasma proteins makes the analysis very challenging because a large number of low abundance proteins are often masked by a few high abundance proteins. The use of prefractionation methods, such as depletion of higher abundance proteins before protein profiling, can assist in the discovery and detection of less abundant proteins that may ultimately prove to be informative biomarkers. But there are few studies on comprehensive investigation of the proteins both in the fractions depleted and remainder. In the present study, two different immunoaffinity fractionation columns for the top-6 or the top-12 proteins in plasma were investigated and both the proteins in column-bound and flow-through fractions were subsequently analyzed. A two-dimensional peptide separation strategy, utilizing chromatographic separation techniques, combined with tandem mass spectrometry (MS/MS) was employed for proteomic analysis of the four fractions. Using the established HUPO PPP criteria, a total of 2401 unique plasma proteins were identified. The Multiple Affinity Removal System yielded 921 and 725 unique proteins from the flow-through and bound fractions, respectively, whereas the Seppro MIXED 12 column yielded identification of 897 and 730 unique proteins from the flow-through and bound fractions, respectively. When more stringent criteria, based on searching against the reversed database, were implemented, 529 unique proteins were identified from the four fractions with the confidence in peptide identification increased from 73.6% to 99%. To determine whether the presence of nontarget proteins in the immunoaffinity-bound fraction could be attributed to their interaction with high abundance proteins, co-immunoprecipitation analysis with an antibody to human plasma albumin was performed, which resulted in an identification of 40 unique proteins from the coimmunoprecipitate with the more stringent criteria. This study illustrated that combining the column-bound and flow-through fractions from immunoaffinity separation affords more extensive profiling of the protein content of human plasma. The presence of nontarget proteins in the column-bound fractions may be induced by their binding to the higher abundance proteins targeted by the immunoaffinity column.  相似文献   

12.
In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions.  相似文献   

13.
Jiang X  Feng S  Tian R  Han G  Jiang X  Ye M  Zou H 《Proteomics》2007,7(4):528-539
An approach was developed to automate sample introduction for nanoflow LC-MS/MS (microLC-MS/MS) analysis using a strong cation exchange (SCX) trap column. The system consisted of a 100 microm id x 2 cm SCX trap column and a 75 microm id x 12 cm C18 RP analytical column. During the sample loading step, the flow passing through the SCX trap column was directed to waste for loading a large volume of sample at high flow rate. Then the peptides bound on the SCX trap column were eluted onto the RP analytical column by a high salt buffer followed by RP chromatographic separation of the peptides at nanoliter flow rate. It was observed that higher performance of separation could be achieved with the system using SCX trap column than with the system using C18 trap column. The high proteomic coverage using this approach was demonstrated in the analysis of tryptic digest of BSA and yeast cell lysate. In addition, this system was also applied to two-dimensional separation of tryptic digest of human hepatocellular carcinoma cell line SMMC-7721 for large scale proteome analysis. This system was fully automated and required minimum changes on current microLC-MS/MS system. This system represented a promising platform for routine proteome analysis.  相似文献   

14.
The kidney glomerulus plays a pivotal role in ultrafiltration of plasma into urine and also is the locus of kidney disease progressing to chronic renal failure. We have focused proteomic analysis on the glomerulus that is most proximal to the disease locus. In the present study, we aimed to provide a confident, in-depth profiling of the glomerulus proteome. The glomeruli were highly purified from the kidney cortex from a male, 68-year-old patient who underwent nephroureterectomy due to ureter carcinoma. The patient was normal in clinical examinations including serum creatinine and urea levels and liver function, and did not receive any chemotherapy and radiotherapy. The cortical tissue was histologically normal, and no significant deposition of immunoglobulins and complement C3 was observed. We employed a novel strategy of protein separation using 1D (SDS-PAGE) and 2D (solution-phase IEF in combination with SDS-PAGE) prefractionation prior to the shotgun analysis with LC-MS/MS. The protein prefractionation produced 90 fractions, and eventually provided a confident set of identified proteins consisting of 6686 unique proteins (3679 proteins with two or more peptide matches and 3007 proteins with one peptide match), representing 2966 distinct genes. All the identified proteins were annotated and classified in terms of molecular function and biological process, compiled into 1D and 2D protein arrays, consisting of 15 and 75 sections, corresponding to the protein fractions which were defined by MW and pI range, and deposited on a Web-based database (http://www.hkupp.org). The most remarkable feature of the glomerulus proteome was a high incidence of identification of cytoskeleton-related proteins, presumably reflecting the well-developed, cytoskeletal organization of glomerular cells related to their physiological functions.  相似文献   

15.
A two-dimensional high-performance liquid chromatography (2D-HPLC) system for protein separation was developed using an ion-exchange column in the first dimension and a reversed-phase monolithic column in the second dimension. The system demonstrated efficient separation of proteins in comparison with conventional systems. For proteomic analysis, proteins extracted from the cell surface of the yeast were separated by 2D-HPLC and evaluated.  相似文献   

16.
In order to discover novel protein markers indicative of disease processes or drug effects, the proteomics technology platform most commonly used consists of high resolution protein separation by two-dimensional electrophoresis (2-DE), mass spectrometric identification of proteins from stained gel spots and a bioinformatic data analysis process supported by statistics. This approach has been more successful in profiling proteins and their disease- or treatment-related quantitative changes in tissue homogenates than in plasma samples. Plasma protein display and quantitation suffer from several disadvantages: very high abundance of a few proteins; high heterogeneity of many proteins resulting in long charge trains; crowding of 2-DE separated protein spots in the molecular mass range between 45-80 kD and in the isoelectric point range between 4.5 and 6. Therefore, proteomic technologies are needed that address these problems and particularly allow accurate quantitation of a larger number of less abundant proteins in plasma and other body fluids. The immunoaffinity-based protein subtraction chromatography (IASC) described here removes multiple proteins present in plasma and serum in high concentrations effectively and reproducibly. Applying IASC as an upfront plasma sample preparation process for 2-DE, the protein spot pattern observed in gels changes dramatically and at least 350 additional lower abundance proteins are visualized. Affinity-purified polyclonal antibodies (pAbs) are the immunoaffinity reagents used to specifically remove the abundant proteins such as albumin, immunoglobulin G, immunoglobulin A, transferrin, haptoglobin, alpha-1-antitrypsin, hemopexin, transthyretin, alpha-2-HS glycoprotein, alpha-1-acid glycoprotein, alpha-2-macroglobulin and fibrinogen from human plasma samples. To render the immunoaffinity subtraction procedure recyclable, the pAbs are immobilized and cross-linked on chromatographic matrices. Antibody-coupled matrices specific for one protein each can be pooled to form mixed-bed IASC columns. We show that up to ten affinity-bound plasma proteins with similar solubility characteristics are eluted from a mixed-bed column in one step. This facilitates automated chromatographic processing of plasma samples in high throughput, which is desirable in proteomic disease marker discovery projects.  相似文献   

17.
The proteomic analysis of serum (plasma) has been a major approach to determining biomarkers essential for early disease diagnoses and drug discoveries. The determination of these biomarkers, however, is analytically challenging since the dynamic concentration range of serum proteins/peptides is extremely wide (more than 10 orders of magnitude). Thus, the reduction in sample complexity prior to proteomic analyses is essential, particularly in analyzing low-abundance protein biomarkers. Here, we demonstrate a novel approach to the proteomic analyses of human serum that uses an originally developed serum protein separation device and a sequentially linked 3-D-LC-MS/MS system. Our hollow-fiber-membrane-based serum pretreatment device can efficiently deplete high-molecular weight proteins and concentrate low-molecular weight proteins/peptides automatically within 1 h. Four independent analyses of healthy human sera pretreated using this unique device, followed by the 3-D-LC-MS/MS successfully produced 12 000-13 000 MS/MS spectra and hit around 1800 proteins (>95% reliability) and 2300 proteins (>80% reliability). We believe that the unique serum pretreatment device and proteomic analysis protocol reported here could be a powerful tool for searching physiological biomarkers by its high throughput (3.7 days per one sample analysis) and high performance of finding low abundant proteins from serum or plasma samples.  相似文献   

18.
Shin YK  Lee HJ  Lee JS  Paik YK 《Proteomics》2006,6(4):1143-1150
To develop a standard method for separating highly basic proteins in mammalian cells, we established a 2-D LC separation system coupled with chromatofocusing/nonporous RP column chromatography (CF/NPRPC) in a ProteomeLab PF2D system. After standardizing conditions for 2-D LC, a 2-D liquid protein map of uninfected macrophage proteins with pH range 8.3-11.3 was constructed, and then compared with a macrophage protein map made after infection with Candida albicans. The results demonstrate that 2-D LC offers both high resolution and reproducibility for separation of highly basic, macrophage proteins. After protein identification using a nano 2-D LC-MS/MS Proteomics Solution System, quantitative determination of the changes in the differentially expressed proteins (e.g., galectin-3) in C. albicans-infected macrophages was also accomplished by measuring the peak area of the chromatogram in 2-D LC. The result from this measurement of galectin-3 expression shows a 3.41-fold decrease in the infected macrophage cells, which was further confirmed by that from the RT-PCR of mRNA of galectin-3. Thus, 2-D LC coupled with CF/NPRPC could be applicable to common analysis of highly basic proteins in a high-throughput manner.  相似文献   

19.
One of the most important morphological changes occurring in arbuscular mycorrhizal (AM) roots takes place when the plant plasma membrane (PM) invaginates around the fungal arbuscular structures resulting in the periarbuscular membrane formation. To investigate whether AM symbiosis-specific proteins accumulate at this stage, two complementary MS approaches targeting the root PM from the model legume Medicago truncatula were designed. Membrane extracts were first enriched in PM using a discontinuous sucrose gradient method. The resulting PM fractions were further analysed with (i) an automated 2-D LC-MS/MS using a strong cation exchange and RP chromatography, and (ii) SDS-PAGE combined with a systematic LC-MS/MS analysis. Seventy-eight proteins, including hydrophobic ones, were reproducibly identified in the PM fraction from non-inoculated roots, representing the first survey of the M. truncatula root PM proteome. Comparison between non-inoculated and Glomus intraradices-inoculated roots revealed two proteins that differed in the mycorrhizal root PM fraction. They corresponded to an H(+)-ATPase (Mtha1) and a predicted glycosylphosphatidylinositol-anchored blue copper-binding protein (MtBcp1), both potentially located on the periarbuscular membrane. The exact role of MtBcp1 in AM symbiosis remains to be investigated.  相似文献   

20.
Following any form of brain insult, proteins are released from damaged tissues into the cerebrospinal fluid (CSF). This body fluid is therefore an ideal sample to use in the search for biomarkers of neurodegenerative disorders and brain damage. In this study, we used human post-mortem CSF as a model of massive brain injury and cell death for the identification of such protein markers. Pooled post-mortem CSF samples were analyzed using a protocol that combined immunoaffinity depletion of abundant CSF proteins, off-gel electrophoresis, SDS-PAGE and protein identification by LC-MS/MS. A total of 299 proteins were identified, of which 172 proteins were not previously described to be present in CSF. Of these 172 proteins, more than 75% have been described as intracellular proteins suggesting that they were released from damaged cells. Immunoblots of a number of proteins were performed on individual post-mortem CSF samples and confirmed elevated concentrations in post-mortem CSF compared to ante-mortem CSF. Interestingly, among the proteins specifically identified in the post-mortem CSF, several have been previously described as biochemical markers of brain damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号