首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The venoms of Latrodectus sp. have been reported to induce contraction probably mediated by adrenergic and cholinergic transmitters. We have demonstrated that the venom of Chilean Latrodectus mactans contains neurotoxins that induce a contraction partially independent of transmitters release. Transmembrane mobility of Na+ and Ca2+ ions and more specifically, the increase of cytoplasmic calcium concentration are responsible for tonic contraction in smooth muscle. Calcium may enter the cell by several ways, such as the voltage-dependent Ca2+ L-type channels and the Na+/Ca2+ exchanger. This study aimed to examine the participation of this exchanger in the tonic contraction of smooth muscle in vas deferent of rat induced by the venom of the Chilean spider L. mactans. Blockers of Na+ channels (amiloride) and Ca2+ L-type channels (nifedipine), and a stimulator of the exchanger (modified Tyrode, Na+ 80 mM) were used. Simultaneously, variations of the cytoplasmic concentration of Ca2+ were registered by microfluorimetry (Fura-2 indicator) in the presence of nifedipine. In presence of amiloride, dose-dependent inhibition of venom-induced contraction was observed, suggesting the participation of voltage-dependent Ca2+ L-type channels. The contraction was only partially inhibited by nifedipine and the Ca2+ cytoplasmic concentration increased, as assessed by the microfluorimetric registration. Finally, the venom-induced contraction increased in the presence of modified Tyrode, probably due to the action of the Na+/Ca2+ exchanger. Taken together, our results support the idea that the Na+/Ca2+ exchanger is active and may be, at least in part, responsible for the contraction induced by the venom of Chilean L. mactans.  相似文献   

2.
Summary Discrepancies about the role of L-type voltage-gated calcium channels (VGCC) in acetylcholine (ACh)-induced [Ca2+]i oscillations in tracheal smooth muscle cells (TSMCs) have been seen in recent reports. We demonstrate here that ACh-induced [Ca2+]i oscillations in TMCS were reversibly inhibited by three VGCC blockers, nicardipine, nifedipine and verapamil. Prolonged (several minutes) application of VGCC blockers, led to tachyphylaxis; that is, [Ca2+]i oscillations resumed, but at a lower frequency. Brief (15–30 s) removal of VGCC blockers re-sensitized [Ca2+]i oscillations to inhibition by the agents. Calcium oscillations tolerant to VGCC blockers were abolished by KB-R7943, an inhibitor of the reverse mode of Na+/Ca2+ exchanger (NCX). KB-R7943 alone also abolished ACh-induced [Ca2+]i oscillations. Enhancement of the reverse mode of NCX via removing extracellular Na+ reversed inhibition of ACh-induced [Ca2+]i oscillations by VGCC blockers. Inhibition of non-selective cation channels using Gd3+ slightly reduced the frequency of ACh-induced [Ca2+]i oscillations, but did not prevent the occurrence of tachyphylaxis. Altogether, these results suggest that VGCC and the reverse mode of NCX are two primary Ca2+ entry pathways for maintaining ACh-induced [Ca2+]i oscillations in TSMCs. The two pathways complement each other, and may account for tachyphylaxis of ACh-induced [Ca2+]i oscillations to VGCC blockers.  相似文献   

3.
Control of smooth muscle is vital for health. The major route to contraction is a rise in intracellular [Ca2+], determined by the entry and efflux of Ca2+ and release and re-uptake into the sarcoplasmic reticulum (SR). We review these processes in myometrium, to better understand excitation-contraction coupling and develop strategies for preventing problematic labours. The main mechanism of elevating [Ca2+] is voltage-gated L-type channels, due to pacemaker activity, which can be modulated by agonists. The rise of [Ca2+] produces Ca-calmodulin and activates MLCK. This phosphorylates myosin and force results. Without Ca2+ entry uterine contraction fails. The Na/Ca exchanger (NCX) and plasma membrane Ca-ATPase (PMCA) remove Ca2+, with contributions of 30% and 70% respectively. Studies with PMCA-4 knockout mice show that it contributes to reducing [Ca2+] and relaxation. The SR contributes to relaxation by vectorially releasing Ca2+ to the efflux pathways, and thereby increasing their rates. Agonists binding produces IP3 which can release Ca from the SR but inhibition of SR Ca2+ release increases contractions and Ca2+ transients. It is suggested that SR Ca2+ targets K+ channels on the surface membrane and thereby feedback to inhibit excitability and contraction.  相似文献   

4.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

5.
Although L-type Ca2+ channels have been shown to play a central role in cardiac excitation-contraction (E-C) coupling, little is known about the role of T-type Ca2+ channels in this process. We used the amphotericin B perforated patch method to study the possible role of T-type Ca2+ current in E-C coupling in isolated canine Purkinje myocytes where both Ca2+ currents are large. T-type Ca2+ current was separated from L-type Ca2+ current using protocols employing the different voltage dependencies of the channel types and their different sensitivities to pharmacological blockade. We showed that Ca2+ admitted through either T- or L-type Ca2+ channels is capable of initiating contraction and that the contractions depended on Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR). The contractions, however, had different properties. Those initiated by Ca2+ entry through T-type Ca2+ channels had a longer delay to the onset of shortening, slower rates of shortening and relaxation, lower peak shortening, and longer time to peak shortening. These differences were present even when L-type Ca2+ current amplitude, or charge entry, was less than that of T-type Ca2+ current, suggesting that Ca2+ entry through the T-type Ca2+ channel is a less effective signal transduction mechanism to the SR than is Ca2+ entry through the L-type Ca2+ channel. We conclude that under our experimental conditions in cardiac Purkinje cells Ca2+ entry through the T-type Ca2+ channel can activate cell contraction. However, Ca2+ entry through the L-type Ca2+ channel is a more effective signal transduction mechanism. Our findings support the concept that different structural relationships exist between these channel types and the SR Ca2+ release mechanism.  相似文献   

6.
We investigated the effects of a relatively selective blocker of the T-type Ca2+ channels, mibefradil (MBF), in the isovolumic left ventricles of the isolated, perfused hearts of guinea-pigs and single myocytes isolated from the ventricles of this species. In the myocytes superfused with 0 Na+ solution containing 200 microM lidocaine and pulsed from -90 mV to -40 mV to +5 mV, MBF proved to be about 3 times more potent inhibitor of the T-type than of the L-type Ca2+ current. The effect on the L-type current was strongly voltage and use dependent. In the ventricles and in the myocytes contraction was reduced by 50% by about 1 microM MBF, the concentration 12 times higher than this increasing the coronary flow by 50%. In myocytes the decrease in unloaded shortening paralleled inhibition of the T-type rather, than of the L-type Ca2+ current. Inhibition of electrically stimulated contraction of the myocytes was three times stronger than inhibition of the caffeine contractures regarded as an index of sarcoplasmic reticulum (SR) Ca2+ content. These findings are consistent with the hypothesis that the T-type Ca2+ channels may contribute to release of Ca2+ from the SR. It is concluded that MBF has a definite negative inotropic effect in the ventricular myocardium of guinea-pig heart at the concentrations found in the blood of the patients submitted to the clinical trials.  相似文献   

7.
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface area-to-volume ratio. Myocytes loaded with the fluorescent Ca(2+)-sensitive dye Fura-2 elicited Ca(2+) transients, which were insensitive to ryanodine and thapsigargin, indicating the SR plays a small role in the regulation of contraction and relaxation in the turtle ventricle. Sarcolemmal Ca(2+) currents were measured using the perforated-patch voltage-clamp technique. Depolarizing voltage steps to 0 mV elicited an inward current that could be blocked by nifedipine, indicating the presence of Ca(2+) currents originating from L-type Ca(2+) channels (I(Ca)). The density of I(Ca) was 3.2 +/- 0.5 pA/pF, which led to an overall total Ca(2+) influx of 64.1 +/- 9.3 microM/l. NCX activity was measured as the Ni(+)-sensitive current at two concentrations of intracellular Na(+) (7 and 14 mM). Total Ca(2+) influx through the NCX during depolarizing voltage steps to 0 mV was 58.5 +/- 7.7 micromol/l and 26.7 +/- 3.2 micromol/l at 14 and 7 mM intracellular Na(+), respectively. In the absence of the SR and L-type Ca(2+) channels, the NCX is able to support myocyte contraction independently. Our results indicate turtle ventricular myocytes are primed for sarcolemmal Ca(2+) transport, and most of the Ca(2+) used for contraction originates from the L-type Ca(2+) channel.  相似文献   

8.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.  相似文献   

9.
Capacitative Ca2+ entry has been examined in several tissues and, in some, appears to be mediated by nonselective cation channels collectively referred to as "store-operated" cation channels; however, relatively little is known about the electrophysiological properties of these channels in airway smooth muscle. Consequently we examined the electrophysiological characteristics and changes in intracellular Ca2+ concentration associated with a cyclopiazonic acid (CPA)-evoked current in porcine and bovine airway smooth muscle using patch-clamp and Ca2+-fluorescence techniques. In bovine tracheal myocytes, CPA induced an elevation of intracellular Ca2+ that was dependent on extracellular Ca2+ and was insensitive to nifedipine (an L-type voltage-gated Ca2+ channel inhibitor). Using patch-clamp techniques and conditions that block both K+ and Cl- currents, we found that CPA rapidly activated a membrane conductance (I(CPA)) in porcine and bovine tracheal myocytes that exhibits a linear current-voltage relationship with a reversal potential around 0 mV. Replacement of extracellular Na+ resulted in a marked reduction of I(CPA) at physiological membrane potentials (i.e., -60 mV) that was accompanied by a shift in the reversal potential for I(CPA) toward more negative membrane potentials. In addition, I(CPA) was markedly inhibited by 10 microM Gd3+ and La3+ but was largely insensitive to 1 microM nifedipine. We conclude that CPA induces capacitative Ca2+ entry in porcine and bovine tracheal smooth muscle via a Gd3+- and La3+-sensitive, nonselective cation conductance.  相似文献   

10.
Sympathetic adrenergic nerves maintain the flaccid state of the penis through the tonic release of norepinephrine that contracts trabecular and arterial smooth muscle. Simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension and experiments with alpha-toxin-permeabilized arteries were performed in branches of the rat dorsal penile artery to investigate the intracellular Ca(2+) signaling pathways underlying alpha(1)-adrenergic vasoconstriction. Phenylephrine increased both [Ca(2+)](i) and tension, these increases being abolished by extracellular Ca(2+) removal and reduced by about 50% by the L-type Ca(2+) channel blocker nifedipine (0.3 microM). Non-L-type Ca(2+) entry through store-operated channels was studied by inhibiting the sarcoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid (CPA). CPA (30 microM) induced variable phasic contractions that were abolished by extracellular Ca(2+) removal and by the store-operated channels antagonist 2-aminoethoxydiphenyl borate (2-APB, 50 microM) and largely inhibited by nifedipine (0.3 microM). CPA induced a sustained increase in [Ca(2+)](i) that was reduced in a Ca(2+)-free medium. Under conditions of L-type channels blockade, Ca(2+) readmission after store depletion with CPA evoked a sustained and marked elevation in [Ca(2+)](i) not coupled to contraction. 2-APB (50 microM) inhibited the rise in [Ca(2+)](i) evoked by CPA and the nifedipine-insensitive increases in both [Ca(2+)](i) and contraction elicited by phenylephrine. In alpha-toxin-permeabilized penile arteries, activation of G proteins with guanosine 5'-O-(3-thiotriphosphate) and of the alpha(1)-adrenoceptor with phenylephrine both enhanced the myofilament sensitivity to Ca(2+). This Ca(2+) sensitization was reduced by selective inhibitors of PKC, tyrosine kinase (TK), and Rho kinase (RhoK) by 43%, 67%, and 82%, respectively. As a whole, the present data suggest the alpha(1)-adrenergic vasoconstriction in penile small arteries involves Ca(2+) entry through both L-type and 2-APB-sensitive receptor-operated channels, as well as Ca(2+) sensitization mechanisms mediated by PKC, TK, and RhoK. A capacitative Ca(2+) entry coupled to noncontractile functions of the smooth muscle cell is also demonstrated.  相似文献   

11.
Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro   总被引:4,自引:0,他引:4  
Quinn T  Molloy M  Smyth A  Baird AW 《Life sciences》2004,74(13):1659-1669
This study investigates the involvement of capacitative Ca2+ entry in excitation-contraction coupling in guinea pig gallbladder smooth muscle. Thapsigargin (0.1 nM-1 microM, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor) produced slowly developing sustained tonic contractions in guinea pig isolated gallbladder strips. All contractions approached 50% of the response to carbachol (10 microM) after 55 min. Contractile responses to thapsigargin (1 microM) were abolished in a Ca(2+)-free medium. Subsequent re-addition of Ca2+ (2.5 mM) produced a sustained tonic contraction (99 +/- 6% of the carbachol response). The contractile response to Ca2+ re-addition following incubation of tissues in a Ca(2+)-free bathing solution in the absence of thapsigargin was significantly less than in its presence (79 +/- 4 % vs 100 +/- 7 % of carbachol; p < 0.05). Contractile responses to Ca2+ re-addition following treatment with thapsigargin were attenuated by (a) the L-type voltage-operated Ca2+ channel antagonist, nifedipine (10 microM) and (b) the general inhibitor of Ca2+ entry channels including store-operated channels, SK&F96365 (50 microM and 100 microM). In separate experiments, responses to Ca2+ re-addition were essentially abolished by the tyrosine kinase inhibitor, genistein (100 microM). These results suggest that capacitative Ca2+ entry provides a source of activator Ca2+ for guinea pig gallbladder smooth muscle contraction. Contractile responses to Ca2+ re-addition following depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin, are mediated in part by Ca2+ entry through voltage-operated Ca2+ channels and by capacitative Ca2+ entry through store-operated Ca2+ channels which can be blocked by SK&F96365. Furthermore, capacitative Ca2+ entry in this tissue may be modulated by tyrosine kinase.  相似文献   

12.
In experiments on isolated porcine and canine coronary artery rings it was shown that vascular smooth muscle (VSM) during hypoxia (decreasing bath PO2 with 147 to 20-15 mm Hg) response to biphasic constriction-dilation reaction. Transient hypoxic contractions (THC) of VSM preserved completely in Ca2+-free solution and partially (up 50-60%) in the presence of Ca2+-channel blockers, but abolished by procaine. THC of VSM skinned by saponin significantly depressed at depletion of Ca2+-store sarcoplasmic reticulum (SR) by caffeine nd abolished after SR destruction. THC is not linked with Na+-K+-ATPase inhibition because it preserved (or increased) at ouabain treatment. THC significantly depressed under selective glycolysis blockade by monoiodoacetic acid and pyruvate and also after inositol-1 monophosphatase inhibition by lithium (the phase of hypoxic relaxation of VSM was augmented in this condition). Our results indicate that transient contraction of coronary arteries under hypoxia may be mediated mainly by release of Ca2+ from SR and linked obviously with production of inositol-1,4,5-trisphosphate. The participation of glycolysis in this process is unknown.  相似文献   

13.
猪冠状动脉平滑肌细胞的自发瞬时外向电流的特性   总被引:7,自引:0,他引:7  
Cai F  Li PY  Yang Y  Liu ZF  Li ML  Zhou W  Pei J  Cheng J  Lan H  Grammer JB  Zeng XR 《生理学报》2007,59(1):27-34
自发瞬时外向电流(spontaneous transient outward currents,STOCs)在小动脉的肌源性调节中起着非常重要的作用。本文应用穿孔膜片钳技术记录了猪冠状动脉平滑肌细胞上的STOCs,研究了其基本特性以及调节。结果显示:STOCs有明显的电压依赖性和钙依赖性,其频率和幅度具有变异性。STOCs可以随机叠加在阶跃刺激方案和斜坡刺激方案引出的全细胞钾电流上。STOCs可被大电导钙激活钾(large-conductance Ca^2+-activated potassium,BKCa)通道的特异性阻断剂ChTX、螯合胞外钙离子和50μmol/L ryanodine完全抑制。钙离子载体A23187可以明显增加STOCs的幅度和频率;而L型钙通道阻断剂verapamil和CdCl2对STOCs的影响很小。咖啡因使STOCs瞬时爆发性增加,然后抑制。钠离子载体可明显增加STOCs的频率;钠钙交换体选择性抑制剂KB.R7943可明显抑制STOCs。由此可以认为STOCs是BKCa通道介导的。STOCs的产生和激活依赖于经钠钙交换的钙内流和经肌浆网ryanodine受体介导的钙释放,钠钙交换可能决定钙库重载,而细胞膜下肌浆网的胞内钙释放(钙火花)所致的局部钙浓度瞬时增加激活与其相邻的BKCa通道,产生STOCs。  相似文献   

14.
The objective of this work was to confirm that the contractile effects of ouabain and Na(+)-free solutions in guinea pig tracheal rings are associated with increments in the cytosolic free Ca2+ concentration ([Ca2+]i) in cultured tracheal smooth muscle (TSM) cells. Cultured cells were alpha-actin positive. Histamine (50 microM) and Na(+)-free solution elicited a transient increase in [Ca2+]i, while the responses to thapsigargin (1 microM) and ouabain (1 mM) were long lasting. However, carbachol (10, 200, and 500 mM) and high K(+)-solution produced no effect on [Ca2+]i, suggesting that cultured guinea pig TSM cells display a phenotype change but maintain some of the tracheal rings physiological properties. The transient rise in [Ca2+]i in response to the absence of extracellular Na+ and the effect of ouabain may indicate the participation of the Na(+)/Ca2+ exchanger (NCX) in the regulation of [Ca2+]i.  相似文献   

15.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

16.
The aim of this paper was to characterize the pathways that allow Ca(2+) ions to enter the cell at rest. Under control conditions depolarization produced an increase of intracellular Ca concentration ([Ca(2+)](i)) that increased with depolarization up to about 0 mV and then declined. During prolonged depolarization the increase of [Ca(2+)](i) decayed. This increase of [Ca(2+)](i) was inhibited by nifedipine and the calculated rate of entry of Ca increased on depolarization and then declined with a similar time course to the inactivation of the L-type Ca current. We conclude that this component of change of [Ca(2+)](i) is due to the L-type Ca current. If intracellular Na was elevated then only part of the change of [Ca(2+)](i) was inhibited by nifedipine. The nifedipine-insensitive component increased monotonically with depolarization and showed no relaxation on prolonged depolarization. This component appears to result from Na-Ca exchange (NCX). When the L-type current and NCX were both inhibited (nifedipine and Na-free solution) then depolarization decreased and hyperpolarization increased [Ca(2+)](i). These changes of [Ca(2+)](i) were unaffected by modifiers of B-type Ca channels such as chlorpromazine and AlF(3) but were abolished by gadolinium ions. We conclude that, in addition to L-type Ca channels and NCX, there is another pathway for entry of Ca(2+) into the ventricular myocyte but this is distinct from the previously reported B-type channel.  相似文献   

17.
In Triton-skinned phasic ileal smooth muscle, constitutively active recombinant p21-activated kinase (PAK3) has been shown to induce Ca(2+)-independent contraction, which is accompanied by phosphorylation of caldesmon and desmin (Van Eyk JE, Arrell DK, Foster DB, Strauss JD, Heinonen TY, Furmaniak-Kazmierczak E, Cote GP, and Mak AS. J Biol Chem 273: 23433-23439, 1998). In the present study, we investigated whether PAK has a broad impact on smooth muscle in general by testing the hypothesis that PAK induces Ca(2+)-independent contractions and/or Ca(2+) sensitization in tonic airway smooth muscle and that the process is mediated via phosphorylation of caldesmon. In the absence of Ca(2+) (pCa > 9), constitutively active glutathione-S-transferase-murine PAK3 (GST-mPAK3) caused force generation of Triton-skinned canine tracheal smooth muscle (TSM) fibers to approximately 40% of the maximal force generated by Ca(2+) at pCa 4.4. In addition, GST-mPAK3 enhanced Ca(2+) sensitivity of contraction by increasing force generation by 80% at intermediate Ca(2+) concentrations (pCa 6.2), whereas it had no effect at pCa 4.4. Catalytically inactive GST-mPAK3(K297R) had no effect on force production. Using antibody against one of the PAK-phosphorylated sites (Ser(657)) on caldesmon, we showed that a basal level of phosphorylation of caldesmon occurs at this site in skinned TSM and that PAK-induced contraction was accompanied by a significant increase in the level of phosphorylation. Western blot analyses show that PAK1 is the predominant PAK isoform expressed in murine, rat, canine, and porcine TSM. We conclude that PAK causes Ca(2+)-independent contractions and produces Ca(2+) sensitization of skinned phasic and tonic smooth muscle, which involves an incremental increase in caldesmon phosphorylation.  相似文献   

18.
According to the current views the direct and indispensable source of Ca2+ activating contraction is sarcoplasmic reticulum (SR). Ca2+ is released from the SR when its release channels (ryanodine receptors) are activated by Ca2+ influx through the L-type Ca2+ channels (dihydropyridine receptors). In contrast, ryanodine receptors of skeletal muscles are activated by conformational changes in dihydropyridine receptors induced by sarcolemmal voltage. Ca2+ influx is not necessary for their activation. In this review the papers not quite conforming with the current views are referred to and discussed. Their results suggest that SR is not an indispensable source of contractile Ca2+ at least in some mammalian species, and that cardiac ryanodine receptors may be activated by conformational changes in dihydropyridine receptors without Ca2+ influx (like in skeletal muscle). This may be a mechanism parallel to or accessory to the Ca2+ induced release of Ca2+ (CIRC).  相似文献   

19.
Fluctuations in intracellular calcium concentration ([Ca2+]i) constitute the main link in excitation-contraction coupling (E-C coupling) in airway smooth muscle cells (ASMC). It has recently been reported that ACh induces asynchronous recurring Ca2+ waves in intact ASMC of murine bronchioles. With the use of a novel technique allowing us to simultaneously measure subcellular [Ca2+]i and force generation in ASMC located within an intact tracheal muscle bundle, we examined a similar pattern of Ca2+ signaling in the trachea. We found that application of ACh resulted in the generation of recurring intracellular Ca2+ waves progressing along the longitudinal axis of the ribbon-shaped intact ASMC. These Ca2+ waves were not synchronized between neighboring cells, and induction of wave-like [Ca2+]i oscillations was temporally associated with development of force by the tracheal muscle bundle. By comparing the concentration dependence of force generation and the parameters characterizing the [Ca2+]i oscillations, we found that the concentration-dependent increase in ACh-induced force development by the tracheal smooth muscle bundle is achieved by differential recruitment of intact ASMC to initiate Ca2+ waves and by enhancement in the frequency of [Ca2+]i oscillations and elevation of interspike [Ca2+]i once the cells are recruited. Our findings demonstrate that asynchronous recurring Ca2+ waves underlie E-C coupling in ACh-induced contraction of the intact tracheal smooth muscle bundle. Furthermore, in contrast to what was reported in enzymatically dissociated ASMC, Ca2+ influx through the L-type voltage-gated Ca2+ channel was not an obligatory requirement for the generation of [Ca2+]i oscillations and development of force in ACh-stimulated intact ASMC.  相似文献   

20.
This study evaluated the relationship between regional elevation in intracellular calcium concentration ([Ca2+]i) induced by acetylcholine (ACh) and the global cellular responses in porcine tracheal smooth muscle (TSM) cells. Regional (approximately 1.5 microm3) and global (whole cell) changes in [Ca2+]i were measured in fluo-3 loaded TSM cells using real-time confocal microscopy. Regional responses appeared as propagating [Ca2+]i oscillations whereas global responses reflected the spatiotemporal integration of these regional responses. Within a region, [Ca2+]i oscillations were 'biphasic' with initial higher frequencies, followed by slower steady-state oscillations. With increasing ACh concentration, the peak (maximum value relative to 0 nM) of regional [Ca2+]i oscillations remained relatively constant, whereas both frequency and propagation velocity increased. In contrast, the global spatiotemporal integration of the regional oscillatory responses appeared as a concentration-dependent increase in peak as well as mean cellular [Ca2+]i. We conclude that the significance of ACh-induced [Ca2+]i oscillations lies in the establishment of mean [Ca2+]i level for slower Ca2+-dependent physiological processes via modulation of oscillation frequency and propagation velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号