首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Paternally expressed imprinted genes (Pegs) were systematically screened by comparing gene expression profiles of parthenogenetic and normal fertilized embryos using an oligonucleotide array. A novel imprinted gene, Peg12/Frat3, was identified along with 10 previously known Pegs. Peg12/Frat3 is expressed primarily in embryonic stages and might be a positive regulator of the Wnt signaling pathway. It locates next to the Zfp127 imprinted gene in the mouse 7C region, which has syntenic homology to the human Prader-Willi syndrome region on chromosome 15q11-q13, indicating that this imprinted region extends to the telomeric side in the mouse.  相似文献   

3.
The Pik m gene in rice confers a high and stable resistance to many isolates of Magnaporthe oryzae collected from southern China. This gene locus was roughly mapped to the long arm of rice chromosome 11 with restriction fragment length polymorphic (RFLP) markers in the previous study. To effectively utilize the resistance, a linkage analysis was performed in a mapping population consisting of 659 highly susceptible plants collected from four F2 populations using the publicly available simple sequence repeat (SSR) markers. The result showed that the locus was linked to the six SSR markers and defined by RM254 and RM144 with ≈13.4 and ≈1.2 cM, respectively. To fine map this locus, additional 10 PCR-based markers were developed in a region flanked by RM254 and RM144 through bioinformatics analysis (BIA) using the reference sequence of cv. Nipponbare. The linkage analysis with these 10 markers showed that the locus was further delimited to a 0.3-cM region flanked by K34 and K10, in which three markers, K27, K28, and K33, completely co-segregated with the locus. To physically map the locus, the Pik m -linked markers were anchored to bacterial artificial chromosome clones of the reference cv. Nipponbare by BIA. A physical map spanning ≈278 kb in length was constructed by alignment of sequences of the clones anchored by BIA, in which only six candidate genes having the R gene conserved structure, protein kinase, were further identified in an 84-kb segment.  相似文献   

4.
Hessian fly [Mayetiola destructor (Say)] is one of the major insect pests of wheat (Triticum aestivum L.) worldwide. Hessian fly (Hf)-resistance genes H16 and H17 were reported to condition resistance to Hf biotype L that is prevalent in many wheat-growing areas of eastern USA, and both of them were previously assigned to wheat chromosome 5A by their linkage to H9. The objectives in this study were to (1) map H16 and H17 independent of their linkage with H9 and (2) identify DNA markers that co-segregate with H16 or H17, and that are useful for selection of these genes in segregating populations and to combine these genes with other Hf-resistance genes in wheat cultivars. Contrary to previously reported locations, H16 and H17 did not show linkage with the molecular markers on chromosome 5A. Instead, both of them are linked with the molecular markers on the short arm of chromosome 1A (1AS). The simple sequence repeat (SSR) marker Xpsp2999 and EST-derived SSR (eSSR) marker Xwem6b are two flanking markers that are linked to H16 at genetic distances of 3.7 and 5.5 cM, respectively. Similarly, H17 is located between markers Xpsp2999 and Xwem6b at genetic distances of 6.2 and 5.1 cM, respectively. Five other SSR and eSSR markers including Xcfa2153, Xbarc263, Xwem3a, Xwmc329, and Xwmc24 were also linked to H16 and H17 at close genetic distances. These closely linked molecular markers should be useful for pyramiding H16 and H17 with other Hessian fly resistance genes in a single wheat genotype. In addition, using Chinese Spring deletion line bin mapping we positioned all of the linked markers and the Hf-resistance genes (H16 and H17) to the distal 14% of chromosome 1AS, where Hf-resistance genes H9, H10, and H11 are located. Our results together with previous studies suggest that Hf-resistance genes H9, H10, H11, H16, and H17 along with the pathogen resistance genes Pm3 and Lr10 appear to occupy a resistance gene cluster in the distal region of chromosome 1AS in wheat. Contribution from Purdue Univ. Agric. Res. Programs Journal Article No. 2007-18105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号