首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic parameters for growth, mortality and reproductive performances of Markhoz goats were estimated from data collected during 1993–2010 at Markhoz goat Performance Testing Station in Sanandaj, Iran. For kid performance traits 3763 records were available for birth weight (BW), 2931 for weaning weight (WW), average daily gain (ADG) and Kleiber ratio (KR) (approximated as ADW/WW0.75) and 3032 for pre-weaning mortality (PWM). For doe reproductive performance traits there were 2920 records available for litter size at birth (LSB), litter size at weaning (LSW), total litter weight at birth (TLWB) and litter mean weight per kid born (LMWKB), and 2182 for total litter weight at weaned (TLWW) and litter mean weight per kid weaned (LMWKW). Genetic parameters were estimated with univariate and bivariate models using restricted maximum likelihood (REML) procedures. Random effects were explored by fitting additive direct genetic effects, maternal additive genetic effects, maternal permanent environmental effects, the covariance between direct and maternal genetic effects, and common litter effects in different models for pre-weaning traits of kids. Also, in addition to an animal model, sire and threshold models, using a logit link function, were used for analyses of PWM. Models for LSB, LSW, TLWB, TLWW, LMWKB, and LMWKW included direct additive genetic effects, permanent environmental effects due to the animal as well as service sire effects. Estimated direct heritabilities were moderate for pre-weaning traits (0.22 for BW, 0.16 for WW, 0.21 for ADG, and 0.27 for KR and 0.29 for PWM), and low for reproduction traits (0.01 for LSB, 0.01 for LSW, 0.02 for TLWB, 0.03 for TLWW, 0.07 for LMWKB, and 0.06 for LMWKW). The estimates for the maternal additive genetic variance ratios were lower than direct heritability for BW (0.07) and KR (0.04). The estimate for the maternal permanent environmental variance ratios (c2) varied from 0.01 for KR to 0.07 for WW and ADG. The magnitude of common litter variance ratios (l2) was more substantial for BW (0.46) than the PWM (0.19) and KR (0.16). The estimate for the permanent environmental variance due to the animal (c2) ranged from 0.03 for LMWKB to 0.07 for TLWB and LMWKW, whereas service sire effects (s2) ranged from 0.02 to 0.04. The correlation between direct and maternal genetic effects were negative and high for BW (?0.51) and KR (?0.62). The genetic correlations between pre-weaning growth traits were positive and moderate to strong, as were genetic correlations between reproductive traits. Between BW and PWM the correlation was ?0.35. Phenotypic and environmental correlations for all traits were generally lower than genetic correlations.  相似文献   

2.
Heritable maternal effects have important consequences for the evolutionary dynamics of phenotypic traits under selection, but have only rarely been tested for or quantified in evolutionary studies. Here we estimate maternal effects on early-life traits in a feral population of Soay sheep (Ovis aries) from St Kilda, Scotland. We then partition the maternal effects into genetic and environmental components to obtain the first direct estimates of maternal genetic effects in a free-living population, and furthermore test for covariance between direct and maternal genetic effects. Using an animal model approach, direct heritabilities (h2) were low but maternal genetic effects (m2) represented a relatively large proportion of the total phenotypic variance for each trait (birth weight m2=0.119, birth date m2=0.197, natal litter size m2=0.211). A negative correlation between direct and maternal genetic effects was estimated for each trait, but was only statistically significant for natal litter size (ram= -0.714). Total heritabilities (incorporating variance from heritable maternal effects and the direct-maternal genetic covariance) were significant for birth weight and birth date but not for natal litter size. Inadequately specified models greatly overestimated additive genetic variance and hence direct h2 (by a factor of up to 6.45 in the case of birth date). We conclude that failure to model heritable maternal variance can result in over- or under-estimation of the potential for traits to respond to selection, and advocate an increased effort to explicitly measure maternal genetic effects in evolutionary studies.  相似文献   

3.
Variance and covariance components for piglet survival in different periods were estimated from individual records of 133 004 Danish Landrace piglets and 89 928 Danish Yorkshire piglets, using a liability threshold model including both direct and maternal additive genetic effects. At the individual piglet level, the estimates of direct heritability in Landrace were 0.035, 0.057 and 0.027, and in Yorkshire the estimates were 0.012, 0.030 and 0.025 for liability of survival at farrowing (SVB), from birth to day 5 (SV5) and from day 6 to weaning (SVW), respectively. The estimates of maternal heritability for SVB, SV5 and SVW were, respectively, 0.057, 0.040 and 0.030 in Landrace, and 0.050, 0.038 and 0.019 in Yorkshire. Both direct and maternal genetic correlations between the three survival traits were low and not significantly different from zero, except for a moderate direct genetic correlation between SVB and SV5 and between SV5 and SVW in Landrace. Direct and maternal genetic correlations between piglet birth weight (BW) and SV5 were moderately high, but the correlations between BW and SVB and between BW and SVW were low and most of them were not significantly different from zero. These results suggest that effective genetic improvement in piglet survival before weaning by selection should be based on both direct and maternal additive genetic effects and treat survival in different periods as different traits.  相似文献   

4.
Quantitative genetic theory predicts that evolution of sexual size dimorphism (SSD) will be a slow process if the genetic correlation in size between the sexes is close to unity, and the heritability of size is similar in both sexes. However, there are very few reliable estimates of genetic correlations and sex-specific heritabilities from natural populations, the reasons for this being that (1) offspring have often been sexed retrospectively, and hence, selection acting differently with respect to body size in the two sexes between measuring and sex identification can bias estimates of SSD; and (2) in many taxa, parents may be incorrectly assigned to offspring either because of assignment errors or because of extrapair paternity. We used molecular sex and paternity identification to overcome these problems and estimated sex-specific heritabilities and the genetic correlation in body size between the two sexes in the collared flycatcher, Ficedula albicollis. After exclusion of the illegitimate offspring, the genetic correlation in body size between the sexes was 1.00 (SE = 0.22), implying a severe constraint on the evolution of SSD in this species. Furthermore, sex-specific heritability estimates were very similar, indicating that neither sex will be able to evolve faster than the other. By using estimated genetic parameters, together with empirically derived estimates of sex-specific selection gradients, we further demonstrated that the predicted selection response in female tarsus length is displaced about 200% in the opposite direction from that to be expected if there were no genetic correlation between the sexes. The correspondence between the biochemically estimated rate of extrapair paternity (about 15 % of the young) and that estimated from the “heritability method” (11%) was good. However, the estimated rate of extrapair paternity with the heritability method after exclusion of the illegitimate young was 22%, adding to increasing evidence that factors other than extrapair paternity (e.g., maternal effects) may be resposible for the commonly observed higher mother-offspring than father-offspring resemblance.  相似文献   

5.
Body weight is one of the most important traits in any genetic improvement program in geese for at least 2 reasons. First, measurements of the trait are very easy. Second, body weight is correlated with a number of other meat performance traits. However, the genetic background of body weight shows considerable complexity. Three genetic models (with direct, maternal genetic and permanent maternal environmental effects) were employed in this study. Records of 3076 individuals of maternal strain W11 and 2656 individuals of paternal strain W33 over 6 consecutive generations, kept in the pedigree farm of Ko?uda Wielka, were analysed. Body weight (in kilograms) was measured in weeks 8 (BW8) and 11 (BW11). The inbreeding levels in both populations were relatively low (0.14% and 0.02% for W11 and W33, respectively), therefore these effects were not included in the linear models to estimate genetic parameters. Three fixed effects (hatch period, sex and year) were included in each linear model. Two criteria (AIC, BIC) were used to check the goodness of fit of the models. The computations were performed by WOMBAT software. In general, the genetic parameter estimates varied across the traits, models and strains studied. Direct additive heritability estimates ranged from 0.0001 (for BW11 of W33) to 0.55 (for BW11 of W33). Maternal and total heritabilities were also variable. Estimates of ratios of direct-maternal effect covariance in phenotypic variance were both positive and negative, but they were negligible, whereas ratios of the permanent environmental maternal variance to phenotypic variance were close to zero. Both of the applied criteria of model adequacy indicate that the model with maternal genetic and environmental effects should be considered as optimal. Genetic trends were close to zero. It seems that they were influenced by long-term selection. Similar tendencies have been observed for phenotypic trends, as well.  相似文献   

6.
In the mink industry, feed costs are the largest variable expense and breeding for feed efficient animals is warranted. Implementation of selection for feed efficiency must consider the relationships between feed efficiency and the current selection traits BW and litter size. Often, feed intake (FI) is recorded on a cage with a male and a female and there is sexual dimorphism that needs to be accounted for. Study aims were to (1) model group recorded FI accounting for sexual dimorphism, (2) derive genetic residual feed intake (RFI) as a measure of feed efficiency, (3) examine the relationship between feed efficiency and BW in males (BWM) and females (BWF) and litter size at day 21 after whelping (LS21) in Danish brown mink and (4) investigate direct and correlated response to selection on each trait of interest. Feed intake records from 9574 cages, BW records on 16 782 males and 16 875 females and LS21 records on 6446 yearling females were used for analysis. Genetic parameters for FI, BWM, BWF and LS21 were obtained using a multivariate animal model, yielding sex-specific additive genetic variances for FI and BW to account for sexual dimorphism. The analysis was performed in a Bayesian setting using Gibbs sampling, and genetic RFI was obtained from the conditional distribution of FI given BW using genetic regression coefficients. Responses to single trait selection were defined as the posterior distribution of genetic superiority of the top 10% of animals after conditioning on the genetic trends. The heritabilities ranged from 0.13 for RFI in females and LS21 to 0.59 for BWF. Genetic correlations between BW in both sexes and LS21 and FI in both sexes were unfavorable, and single trait selection on BW in either sex showed increased FI in both sexes and reduced litter size. Due to the definition of RFI and high genetic correlation between BWM and BWF, selection on RFI did not significantly alter BW. In addition, selection on RFI in either sex did not affect LS21. Genetic correlation between sexes for FI and BW was high but significantly lower than unity. The high correlations across sex allowed for selection on standardized averages of animals’ breeding values (BVs) for RFI, FI and BW, which yielded selection responses approximately equal to the responses obtained using the sex-specific BVs. The results illustrate the possibility of selecting against RFI in mink with no negative effects on BW and litter size.  相似文献   

7.
(Co)variance components and genetic parameters were estimated for body weights of an elite Brahman herd under a designed, supervised management and genetic program, including strategic artificial insemination (AI). Restricted maximum likelihood methods were used with a univariate animal model for birth weight (BW) and a bivariate model for weaning weight (205-day weight, 205W) and 18-month weight (548-day weight, 548W). Models included random animal direct and maternal genetic effects, maternal permanent environmental effect (c2), and sex-year-month of birth-age of dam and genetic group (identified and unidentified paternity), as fixed effects. Analysis A1 included all calves and analysis A2 included only those with identified sires. Of the 8,066 calves born, 36% were progeny of AI, 11% from single sire and 53% from multi-sire herds. They were born from 1985 to 1998, from 2559 dams and 146 sires (78 identified). Estimates of direct, maternal and total heritabilities from A1 for BW, 205W and 548W were: 0.23, 0.07 and 0.30; 0.08, 0.14 and 0.16; 0.16, 0.04 and 0.28, respectively. Corresponding estimates of direct maternal genetic correlations were 0.22, 0.07 and 0.86, and c2 estimates were 0.04, 0.14 and 0.04, respectively. Estimates of direct and maternal genetic, and permanent environmental correlations between 205W and 548W were: 0.66, 0.70 and 1.00. Variances and genetic parameters from A1 and A2 were, in general, very similar. Estimates of phenotypic, and direct and maternal genetic trends per year from A1 were: 0.393, 0.004 and 0.003 kg (BW), 3.367, 0.142 and 0.115 kg (205W), 1.813, 0.263 and 0.095 kg (548W). Estimates of direct and maternal genetic trends from A2 were: 0.033 and -0.002 kg (BW); 0.186 and 0.276 kg (205W); 0.471 and 0.136 kg (548W). The modern selection methods that have been used recently should be continued, with emphasis on the improvement of cow efficiency for sustainable beef production on floodable savanna combined with improved pasture.  相似文献   

8.
《Small Ruminant Research》2007,73(2-3):87-91
In this study, heritabilities and (co)variance components for body weight at 100 days (BW), muscle depth (MD) and fat depth (FD) were estimated for Suffolk, the most common sheep breed in the Czech Republic. Data from 1996 to 2004 were extracted from the sheep recording database of the Czech Sheep and Goat Breeding Association. Genetic parameters were estimated using multivariate animal models, including both direct and maternal genetic effects and permanent environmental effects. Average values for BW, MD and FD were 27.91 kg, 25.5 mm and 3.3 mm, respectively. Direct and maternal heritability for BW were 0.17 and 0.08, respectively, and direct heritabilities were 0.16 for MD and 0.08 for FD. Maternal heritability estimates for ultrasonic measurements were generally low. Direct genetic correlations between BW and MD and maternal genetic correlations between BW and MD were positive and favourable. Both direct genetic correlations between BW and FD and maternal genetic correlations between BW and FD were negative, but not significantly different from zero. The favourable genetic correlations between BW and MD make ultrasound measurements a valuable tool in breeding programs focusing on growth and carcass characteristics.  相似文献   

9.
The objective of this study was to estimate variance components and genetic parameters for secondary sex ratio (SSR) in Iranian buffaloes. Calving records from April 1995 to June 2010 comprising 15,207 calving events from the first three lactations of 1066 buffalo herds of Iran were analyzed using linear and threshold animal models to estimate variance components, heritabilities and genetic correlations between direct and maternal genetic effects for SSR. Linear and threshold animal models included direct and maternal genetic effects with covariance between them and maternal permanent environmental effects were implemented by Gibbs sampling methodology. Posterior means of direct and maternal heritabilities and repeatability for SSR obtained from linear animal model were 0.15, 0.10, and 0.17, respectively. Threshold estimates of direct and maternal heritabilities and repeatability for SSR were 0.48, 0.27, and 0.52, respectively. The results showed that the correlations between direct and maternal genetic effects of SSR were negative and high in both models. In addition, the ratios of maternal permanent environmental variance were low. Exploitable genetic variation in SSR can take advantage of sexual dimorphism for economically important traits which may facilitate greater selection intensity and thus greater response to selection, as well as reducing the replacement costs. Threshold animal model may be applied in selection programs where animals are to be genetically ranked for female rate.  相似文献   

10.
The aim of this study was to estimate the genetic parameters for preweaning traits and their relationship with reproductive, productive and morphological traits in alpacas. The data were collected from 2001 to 2015 in the Pacomarca experimental farm. The data set contained data from 4330 females and 3788 males corresponding to 6396 and 1722 animals for Huacaya and Suri variants, respectively. The number of records for Huacaya and Suri variants were 5494 and 1461 for birth weight (BW), 5429 and 1431 for birth withers height (BH), 3320 and 896 for both weaning weight (WW) and average daily gain (DG) from birth to weaning, 3317 and 896 for weaning withers height (WH), and 5514 and 1474 for survival to weaning. The reproductive traits analyzed were age at first calving and calving interval. The fiber traits were fiber diameter (FD), standard deviation of FD (SD), comfort factor and coefficient of variation of FD and the morphological traits studied were density, crimp in Huacaya and lock structure in Suri, head, coverage and balance. Regarding preweaning traits, model of analysis included additive, maternal and residual random effects for all traits, with sex, coat color, number of calving, month–year and contemporary group as systematic effects, and age at weaning as linear covariate for WW and WH. The most relevant direct heritabilities for Huacaya and Suri were 0.50 and 0.34 for WW, 0.36 and 0.66 for WH, 0.45 and 0.20 for DG, respectively. Maternal heritabilities were 0.25 and 0.38 for BW, 0.18 and 0.32 for BH, 0.29 and 0.39 for WW, 0.19 and 0.26 for WH, 0.27 and 0.36 for DG, respectively. Direct genetic correlations within preweaning traits were high and favorable and lower between direct and maternal genetic effects. The genetic correlations of preweaning traits with fiber traits were moderate and unfavorable. With morphological traits they were high and positive for Suri but not for Huacaya and favorable for direct genetic effect but unfavorable for maternal genetic effect with reproductive traits. If the selection objective was meat production, the selection would have to be based on the direct genetic effect for WW but not on the maternal genetic effect that has been shown to have less relevance. Other weaning traits such as WH or DG would be indirectly selected.  相似文献   

11.
采用禾谷类作物种子数量性状的遗传模型,分析了灿型黑米稻品种双列杂交F1和F2种子的粒重,粒长,粒宽和粒长/粒宽等粒形性状的遗传效应及其与米粒中矿质元素Fe,Zn,Mn和P含量的遗传相关性,结果表明:4种粒形性状同时受制于种子直接遗传效应,母体效应和细胞质作用影响,其中种子直接遗传效应比母体效应和细胞质效应的作用更大,且种子直接遗传效应以加性效应占主导,粒重,粒宽和粒长/粒宽的种子直接遗传率较高,杂种早代单粒选择效果较好,粒长的种子直接遗传率和母体遗传率均属中等,较高世代的杂种进行单株选择和单粒选择均有一定效果,4种粒形性状与其米粒中矿质元素Fe,Zn,Mn和P含量表现较强的种子直接加性相关,直接显性相关,细胞质相关,母体加性相关和母体显性相关,在特种稻育种实践中,可以通过粒形性的间接选择,达到改良其矿质元素含量等营养品质性状的目标。  相似文献   

12.
Sexual dimorphism, or sex-specific trait expression, may evolve when selection favours different optima for the same trait between sexes, that is, under antagonistic selection. Intra-locus sexual conflict exists when the sexually dimorphic trait under antagonistic selection is based on genes shared between sexes. A common assumption is that the presence of sexual-size dimorphism (SSD) indicates that sexual conflict has been, at least partly, resolved via decoupling of the trait architecture between sexes. However, whether and how decoupling of the trait architecture between sexes has been realized often remains unknown. We tested for differences in architecture of adult body size between sexes in a species with extreme SSD, the African hermit spider (Nephilingis cruentata), where adult female body size greatly exceeds that of males. Specifically, we estimated the sex-specific importance of genetic and maternal effects on adult body size among individuals that we laboratory-reared for up to eight generations. Quantitative genetic model estimates indicated that size variation in females is to a larger extent explained by direct genetic effects than by maternal effects, but in males to a larger extent by maternal than by genetic effects. We conclude that this sex-specific body-size architecture enables body-size evolution to proceed much more independently than under a common architecture to both sexes.  相似文献   

13.
Effects of nine generations of 450r per generation of ancestral spermatogonial X irradiation of inbred rats on genetic parameters of body weight at 3, 6 and 10 weeks of age and of weight gains between these periods were studied. Covariances among relatives were estimated by mixed model and regression techniques in randomly selected lines with (R) and without (C) radiation history. Analyses of the data were based on five linear genetic models combining additive direct, additive indirect (maternal), dominance and environmental effects. Parameters in these models were estimated by generalized least-squares. A model including direct and indirect genetic effects fit more closely to the data in both R and C lines. Overdominance of induced mutations did not seem to be present. Ancestral irradiation increased maternal additive genetic variances of body weights and gains but not direct genetic variances. Theoretically, due to a negative direct-maternal genetic correlation, within full-sib family selection would be ineffective in increasing body weight at six weeks in both R and C lines. However, progress from mass selection would be expected to be faster in the R lines.  相似文献   

14.
Genetics of Mandible Form in the Mouse   总被引:7,自引:2,他引:5       下载免费PDF全文
The underlying determination of phenotypic variability and covariability is described for 14 traits that define the morphological size and shape of the mature mouse mandible. Variability is partitioned into components due to direct additive and dominance genetic effects, indirect maternal additive genetic effects, genetic covariance between direct additive and indirect maternal additive effects and common and residual environmental effects. Multivariate analyses of the dimensionality of genetic variability indicate several complex and independent genetic components underlie the morphological form of the mandible. The multidimensional nature of the genetic components suggests a complex picture with regard to the consequences of selection on mandibular form.  相似文献   

15.
黑米中矿质元素铁、锌、锰、磷含量的遗传效应研究   总被引:25,自引:2,他引:23  
采用禾谷类作物种子胚乳数量性状模型,分析黑米稻品种双列杂交F1和F2种子的Fe、Zn、Mn、P含量的遗传效应。结果表明,4种矿质元素含量同时受制于种子直接遗传效应、母体效应和细胞质作用影响。其中,Fe、Zn、Mn含量的种子直接效应比母体效应和细胞质效应的作用更大;P含量则主要受种子直接加性、母体加性和显性效应共同作用。Fe、Zn、Mn含量的种子直接遗传率较高,在杂种早代分别结合农艺性状选择单株上各  相似文献   

16.
《Small Ruminant Research》2010,92(2-3):170-177
Genetic parameters were estimated for birth weight (BW), weaning weight (WW), yearling weight (YW), average daily gain from birth to weaning (ADG1) and average daily gain from weaning to yearling (ADG2) in Moghani sheep. Maximum number of data was 4237 at birth, but only 1389 records at yearling were investigated. The data was collected from 1995 to 2007 at the Breeding Station of Moghani sheep in Jafarabad, Moghan, Iran. (Co)Variance components and genetic parameters were estimated with different models which including direct effects, with and without maternal additive genetic effects as well as maternal permanent environmental effects using restricted maximum likelihood (REML) method. The most appropriate model for each trait was determined based on likelihood ratio tests and Akaike's Information Criterion (AIC). Maternal effects were important only for pre-weaning traits. Direct heritability estimates for BW, ADG1, WW, ADG2 and YW were 0.07, 0.08, 0.09, 0.09 and 0.17, respectively. Fractions of variance due to maternal permanent environmental effects on phenotypic variance were 0.08 for ADG1. Maternal heritability estimates for BW and WW were 0.18 and 0.06, respectively. Multivariate analysis was performed using the most appropriate models obtained in univariate analysis. Direct genetic correlations among studied traits were positive and ranged from 0.37 for BW–ADG2 to 0.85 for ADG1–YW. Maternal genetic correlation estimate between BW and WW was 0.33. Phenotypic and environmental correlation estimates were generally lower than those of genetic correlation. Low direct heritability estimates imply that mass selection for these traits results in slow genetic gain.  相似文献   

17.
The genetic analysis of composite data is very complicated, mainly because it is necessary to adjust data to the effects of heterosis and breed complementarity, and because there is usually considerable confounding of these data with several other effects, such as contemporary group effects, breed composition of the animal and maternal breed composition, among others. Data on birth weight (n = 151,083), weaning weight adjusted to 205 days (n = 137,257), yearling weight adjusted to 390 days (n = 61,410), weight gain from weaning to yearling (n = 56,653), and scrotum circumference (n = 23,323) and muscle score (n = 54,770), both adjusted to 390 days, from Bos taurus x Bos indicus composite beef calves born from 1994 to 2003 were analyzed to estimate (co)variance components and genetic parameters of growth traits. The animals belonged to the Montana Tropical program. Estimation was made by three models that approach adjustment to heterozygosis in order to suggest the best model. The RM model included contemporary groups, class of age of dam, outcrossing percentages for direct and maternal effects, and direct and maternal additive genetic breed effects as covariates; the R model was the same as RM, but without additive maternal breed effects, and H was the same as RM, but not considering any additive breed effect. Both R2 values and consistency of genetic parameters indicate that the more complex model (RM), which considers maternal and individual additive genetic breed effect, produces the best estimates when compared to other models. The R model seems to overestimate (co)variance components. The magnitudes of direct and maternal heritability estimates, obtained in this study, would permit genetic improvement for weight and growth traits, as much by selection of direct genetic effects for weight and growth as for the improvement of maternal performance, but in different lineages. Therefore, the correlations between these effects were unfavorable.  相似文献   

18.
Sexual dimorphism (SD) is widespread, reflecting a resolution of genetic conflicts arising from sex-specific differences in selection. However, genetic correlations among traits may constrain the evolution of SD. Drosophila melanogaster exhibits SD for pupal period (males longer) and adult weight (females heavier). This negative inter-sex covariance between the traits contrasts with a significant intra-sex positive genetic correlation (r(g) = 0.95) estimated using lines selected for fast larval development. Path analysis indicated that within sexes the selection regime indirectly reduced adult weight which in turn reduced pupal period. A hypothesis is proposed for the evolution of SD whereby the trait 'pupal period' is divided into 'intrinsic' (correlated with body size) and 'ecological' (uncorrelated with body size) components, and (the larger) females eclose earlier than males size via a shortening of the ecological component, thus achieving the advantage of provisioning eggs prior to sexual maturity. This hypothesis avoids invoking successful 'incompatible antagonistic selection'.  相似文献   

19.
Evolution of size and growth depends on heritable variation arising from additive and maternal genetic effects. Levels of heritable (and nonheritable) variation might change over ontogeny, increasing through "variance compounding" or decreasing through "compensatory growth." We test for these processes using a meta-analysis of age-specific weight traits in domestic ungulates. Generally, mean standardized variance components decrease with age, consistent with compensatory growth. Phenotypic convergence among adult sheep occurs through decreasing environmental and maternal genetic variation. Maternal variation similarly declines in cattle. Maternal genetic effects are thus reduced with age (both in absolute and relative terms). Significant trends in heritability (decreasing in cattle, increasing in sheep) result from declining maternal and environmental components rather than from changing additive variation. There was no evidence for increasing standardized variance components. Any compounding must therefore be masked by more important compensatory processes. While extrapolation of these patterns to processes in natural population is difficult, our results highlight the inadequacy of assuming constancy in genetic parameters over ontogeny. Negative covariance between direct and maternal genetic effects was common. Negative correlations with additive and maternal genetic variances indicate that antagonistic pleiotropy (between additive and maternal genetic effects) may maintain genetic variance and limit responses to selection.  相似文献   

20.
Estimates of genetic components are important for our understanding of how individual characteristics are transferred between generations. We show that the level of heritability varies between 0.12 and 0.68 in six morphological traits in house sparrows (Passer domesticus L.) in northern Norway. Positive and negative genetic correlations were present among traits, suggesting evolutionary constraints on the evolution of some of these characters. A sexual difference in the amount of heritable genetic variation was found in tarsus length, wing length, bill depth and body condition index, with generally higher heritability in females. In addition, the structure of the genetic variance-covariance matrix for the traits differed between the sexes. Genetic correlations between males and females for the morphological traits were however large and not significantly different from one, indicating that sex-specific responses to selection will be influenced by intersexual differences in selection differentials. Despite this, some traits had heritability above 0.1 in females, even after conditioning on the additive genetic covariance between sexes and the additive genetic variances in males. Moreover, a meta-analysis indicated that higher heritability in females than in males may be common in birds. Thus, this indicates sexual differences in the genetic architecture of birds. Consequently, as in house sparrows, the evolutionary responses to selection will often be larger in females than males. Hence, our results suggest that sex-specific additive genetic variances and covariances, although ignored in most studies, should be included when making predictions of evolutionary changes from standard quantitative genetic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号