首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cryptococcus neoformans causes life-threatening meningoencephalitis, particularly prevalent in AIDS patients. The interrelationship between C. neoformans and HIV-1 is intriguing, as both pathogens elicit severe neuropathological complications. We have previously demonstrated that the HIV-1 gp41 ectodomain fragments gp41-I33 (amino acids 579-611) and gp41-I90 (amino acids 550-639) can enhance C. neoformans binding to HBMECs (human brain microvascular endothelial cells). Both peptides contain the loop region of gp41. In the present study, we used immunofluorescence microscopy and transmission and scanning electron microscopy to explore the underlying mechanisms. Our findings indicated that both C. neoformans and gp41-I90 up-regulated ICAM-1 (intercellular adhesion molecule 1) on the HBMECs and elicited membrane ruffling on the surface of HBMECs. The HIV-1 gp41 ectodomain could also induce CD44 and β-actin redistribution to the membrane lipid rafts, but it could not enhance PKCα (protein kinase Cα) phosphorylation like C. neoformans. Instead, gp41-I90 was able to induce syncytium formation on HBMECs. The results of the present study suggest HIV-1 gp41-enhanced C. neoformans binding to HBMECs via gp41 core domain-induced membrane activities, revealing a potential mechanism of invasion for this pathogenic fungus into the brain tissues of HIV-1-infected patients.  相似文献   

2.
The fungus C. albicans uses adhesins to interact with human epithelial surfaces in the processes of colonization and pathogenesis. The C. albicans ALS (agglutinin-like sequence) gene family encodes eight large cell-surface glycoproteins (Als1-Als7 and Als9) that have adhesive function. This study utilized C. albicans Δals mutant strains to investigate the role of the Als family in oral epithelial cell adhesion and damage, cytokine induction and activation of a MAPK-based (MKP1/c-Fos) signaling pathway that discriminates between yeast and hyphae. Of the eight Δals mutants tested, only the Δals3 strain showed significant reductions in oral epithelial cell adhesion and damage, and cytokine production. High fungal:epithelial cell multiplicities of infection were able to rescue the cell damage and cytokine production phenotypes, demonstrating the importance of fungal burden in mucosal infections. Despite its adhesion, damage and cytokine induction phenotypes, the Δals3 strain induced MKP1 phosphorylation and c-Fos production to a similar extent as control cells. Our data demonstrate that Als3 is involved directly in epithelial adhesion but indirectly in cell damage and cytokine induction, and is not the factor targeted by oral epithelial cells to discriminate between the yeast and hyphal form of C. albicans.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 tightly binds CD4 as its principal cellular receptor, explaining the tropism of HIV-1 for CD4+ cells. Nevertheless, reports documenting HIV infection or HIV binding in cells lacking CD4 surface expression have raised the possibility that cellular receptors in addition to CD4 may interact with HIV envelope. Moreover, the lymphocyte adhesion molecule LFA-1 appears to play an important role in augmenting HIV-1 viral spread and cytopathicity in vitro, although the mechanism of this function is still not completely defined. In the course of characterizing a human anti-HIV gp41 monoclonal antibody, we transfected a CD4-negative, LFA-1-negative B-cell line to express an anti-gp41 immunoglobulin receptor (surface immunoglobulin [sIg]/gp41). Despite acquiring the ability to bind HIV envelope, such transfected B cells could not be infected by HIV-1. These cells were not intrinsically defective for supporting HIV-1 infection, because when directed to produce surface CD4 by using retroviral constructs, they acquired the ability to replicate HIV-1. Interestingly, transfected cells expressing both surface CD4 and sIg/gp41 receptors replicated HIV much better than cells expressing only CD4. The enhancement resided specifically in sIg/gp41, because isotype-specific, anti-IgG1 antibodies directed against sIg/gp41 blocked the enhancement. These data directly establish the ability of a cell surface anti-gp41 receptor to enhance HIV-1 replication.  相似文献   

4.
Candida albicans is the leading cause of systemic fungal infections in immunocompromised humans. The ability to form biofilms on surfaces in the host or on implanted medical devices enhances C. albicans virulence, leading to antimicrobial resistance and providing a reservoir for infection. Biofilm formation is a complex multicellular process consisting of cell adhesion, cell growth, morphogenic switching between yeast form and filamentous states, and quorum sensing. Here we describe the role of the C. albicans EAP1 gene, which encodes a glycosylphosphatidylinositol-anchored, glucan-cross-linked cell wall protein, in adhesion and biofilm formation in vitro and in vivo. Deleting EAP1 reduced cell adhesion to polystyrene and epithelial cells in a gene dosage-dependent manner. Furthermore, EAP1 expression was required for C. albicans biofilm formation in an in vitro parallel plate flow chamber model and in an in vivo rat central venous catheter model. EAP1 expression was upregulated in biofilm-associated cells in vitro and in vivo. Our results illustrate an association between Eap1p-mediated adhesion and biofilm formation in vitro and in vivo.  相似文献   

5.
During hematogenously disseminated disease, Candida albicans infects most organs, including the brain. We discovered that a C. albicans vps51Δ/Δ mutant had significantly increased tropism for the brain in the mouse model of disseminated disease. To investigate the mechanisms of this enhanced trafficking to the brain, we studied the interactions of wild-type C. albicans and the vps51Δ/Δ mutant with brain microvascular endothelial cells in vitro. These studies revealed that C. albicans invasion of brain endothelial cells is mediated by the fungal invasins, Als3 and Ssa1. Als3 binds to the gp96 heat shock protein, which is expressed on the surface of brain endothelial cells, but not human umbilical vein endothelial cells, whereas Ssa1 binds to a brain endothelial cell receptor other than gp96. The vps51Δ/Δ mutant has increased surface expression of Als3, which is a major cause of the increased capacity of this mutant to both invade brain endothelial cells in vitro and traffic to the brain in mice. Therefore, during disseminated disease, C. albicans traffics to and infects the brain by binding to gp96, a unique receptor that is expressed specifically on the surface of brain endothelial cells.  相似文献   

6.
Tsai PW  Yang CY  Chang HT  Lan CY 《PloS one》2011,6(6):e21394
Candida albicans is the major fungal pathogen of humans. Its adhesion to host-cell surfaces is the first critical step during mucosal infection. Antimicrobial peptides play important roles in the first line of mucosal immunity against C. albicans infection. LL-37 is the only member of the human cathelicidin antimicrobial peptide family and is commonly expressed in various tissues, including epithelium. We previously showed that LL-37 significantly reduced C. albicans adhesion to plastic, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. The inhibitory effect of LL-37 on cell adhesion occurred via the binding of LL-37 to cell-wall carbohydrates. Here we showed that formation of LL-37-cell-wall protein complexes potentially inhibits C. albicans adhesion to polystyrene. Using phage display and ELISA, we identified 10 peptide sequences that could bind LL-37. A BLAST search revealed that four sequences in the major C. albicans cell-wall β-1,3-exoglucanase, Xog1p, were highly similar to the consensus sequence derived from the 10 biopanned peptides. One Xog1p-derived peptide, Xog1p(90-115), and recombinant Xog1p associated with LL-37, thereby reversing the inhibitory effect of LL-37 on C. albicans adhesion. LL-37 reduced Xog1p activity and thus interrupted cell-wall remodeling. Moreover, deletion of XOG1 or another β-1,3-exoglucanase-encoding gene EXG2 showed that only when XOG1 was deleted did cellular exoglucanase activity, cell adhesion and LL-37 binding decrease. Antibodies against Xog1p also decreased cell adhesion. These data reveal that Xog1p, originally identified from LL-37 binding, has a role in C. albicans adhesion to polystyrene and, by inference, attach to host cells via direct or indirect manners. Compounds that target Xog1p might find use as drugs that prevent C. albicans infection. Additionally, LL-37 could potentially be used to screen for other cell-wall components involved in fungal cell adhesion.  相似文献   

7.
The ability of one primary human immunodeficiency virus type 1 (HIV-1) isolate to outcompete another in primary CD4+ human lymphoid cells appears to be mediated by the efficiency of host cell entry. This study was designed to test the role of entry on fitness of wild-type HIV-1 isolates (e.g., replicative capacity) and to examine the mechanism(s) involved in differential entry efficiency. The gp120 coding regions of two diverse HIV-1 isolates (the more-fit subtype B strain, B5-91US056, and less-fit C strain, C5-97ZA003) were cloned into a neutral HIV-1 backbone by using a recently described yeast cloning technique. The fitness of the primary B5 HIV-1 isolates and its env gene cloned into the NL4-3 laboratory strain had similar fitness, and both were more fit than the C5 primary isolate and its env/NL4-3 chimeric counterpart. Increased fitness of the B5 over C5 virus was mediated by the gp120 coding region of the env gene. An increase in binding/fusion, as well as decreased sensitivity to entry inhibitors (PSC-RANTES and T-20), was observed in cell fusion assays mediated by B5 gp120 compared to C5 gp120. Competitive binding assays using a novel whole virus-cell system indicate that the primary or chimeric B5 had a higher avidity for CD4/CCR5 on host cells than the C5 counterpart. This increased avidity of an HIV-1 isolate for its cell receptors may be a significant factor influencing overall replicative capacity or fitness.  相似文献   

8.
Aims:  The antifungal activity of ( R )-goniothalamin ( 1 ) and ( S )-goniothalamin ( ent - 1 ) was evaluated against six Candida species. The in vitro effect of these compounds on yeast adhesion to human buccal epithelial cells (BEC) and Candida albicans and C. dubliniensis biofilms progression were also investigated.
Methods and Results:  Yeast susceptibility was evaluated by broth microdilution assay and showed that ent - 1 exhibited higher potency against all fungal clinical isolated when compared to compound 1 . Compounds 1 and ent - 1 were as potent as fluconazole in inhibiting the adhesion of C. albicans and C. dubliniensis to BEC. XTT-reducing assay and scanning electron microscopy revealed that 1 and ent - 1 were twice as potent as fluconazole in the inhibition of yeast biofilms progression.
Conclusions:  Our findings indicate that compounds 1 and ent - 1 are potent anticandidal agents.
Significance and Impact of the Study:  This study highlights goniothalamin enantiomers as promising lead compounds for the design of new antifungal with inhibitory activity on yeast adhesion and biofilm progression.  相似文献   

9.
Attachment of Candida spp. to host tissues and plastic surfaces is the first and a crucial step that initiates colonization by yeast cells and subsequent development of disseminated fungal infection. These infections are associated with high degree of morbidity, mortality and extra cost. Modern trends have focused not only on how best to treat but also on how to prevent Candida infections. To achieve this goal, the factors that influence the adherence of Candida spp. to biological and non biological surfaces have been studied. C. albicans adheres at a degree higher than that of the other Candida spp. and C. tropicalis adheres to a lesser extent. This may reflect the higher pathogenicity of C. albicans compared to the other Candida spp. Germinated C. albicans cells adhere to host tissue more readily than do yeast-phase. Sugars play an important role in the adherence of Candida spp. Overall, galactose was found to promote the adherence of Candida spp. to host tissues and plastic surfaces more than any other mono or disaccharide. Amino sugars on the other hand inhibit the adherence of the yeast cells. Divalent ions such as Ca2+ and Mg2+ promote the adherence of Candida spp. more than monovalent ions. Candida spp. express on their surface receptors, which interact with a wide variety of host proteins including fibrinogen, fibronectin, lamanin, and type I and IV collagen thus binding Candida spp. To glycoproteinaceous conditioning film at the blood-polymer interface. Coaggregation of Candida spp. with other bacteria promotes colonization of yeast cells to oral biofilm, host tissues, and to surfaces of the indwelling vascular catheters. These factors form the basis for the interference with the adherence of Candida spp.  相似文献   

10.
Candida albicans binds and utilizes human complement inhibitors, such as C4b-binding protein (C4BP), Factor H, and FHL-1 for immune evasion. Here, we identify Candida pH-regulated antigen 1 (Pra1) as the first fungal C4BP-binding protein. Recombinant Pra1 binds C4BP, as shown by ELISA and isothermal titration calorimetry, and the Pra1-C4BP interaction is ionic in nature. The Pra1 binding domains within C4BP were localized to the complement control protein domain 4 (CCP4), CCP7, and CCP8. C4BP bound to Pra1 maintains complement-inhibitory activity. C4BP and Factor H bind simultaneously to Candida Pra1 and do not compete for binding at physiological levels. A Pra1-overexpressing C. albicans strain, which had about 2-fold Pra1 levels at the surface acquired also about 2-fold C4BP to the surface, compared with the wild type strain CAI4. A Pra1 knock-out strain showed ~22% reduced C4BP binding. C4BP captured by C. albicans from human serum inhibits C4b and C3b surface deposition and also maintains cofactor activity. In summary, Candida Pra1 represents the first fungal C4BP-binding surface protein. Pra1, via binding to C4BP, mediates human complement control, thereby favoring the immune and complement evasion of C. albicans.  相似文献   

11.
Mammalian innate immune cells produce reactive oxygen species (ROS) in the oxidative burst reaction to destroy invading microbial pathogens. Using quantitative real-time ROS assays, we show here that both yeast and filamentous forms of the opportunistic human fungal pathogen Candida albicans trigger ROS production in primary innate immune cells such as macrophages and dendritic cells. Through a reverse genetic approach, we demonstrate that coculture of macrophages or myeloid dendritic cells with C. albicans cells lacking the superoxide dismutase (SOD) Sod5 leads to massive extracellular ROS accumulation in vitro . ROS accumulation was further increased in coculture with fungal cells devoid of both Sod4 and Sod5. Survival experiments show that C. albicans mutants lacking Sod5 and Sod4 exhibit a severe loss of viability in the presence of macrophages in vitro . The reduced viability of sod5 Δ/Δ and sod4 Δ/Δ sod5 Δ/Δ mutants relative to wild type is not evident with macrophages from gp91phox −/ − mice defective in the oxidative burst activity, demonstrating a ROS-dependent killing activity of macrophages targeting fungal pathogens. These data show a physiological role for cell surface SODs in detoxifying ROS, and suggest a mechanism whereby C. albicans , and perhaps many other microbial pathogens, can evade host immune surveillance in vivo .  相似文献   

12.
The opportunistic fungus Candida albicans is one of the leading causes of infections in immunocompromised patients, and innate immunity provides a principal mechanism for protection from the pathogen. In the present work, the role of integrin α(X)β(2) in the pathogenesis of fungal infection was assessed. Both purified α(X)β(2) and α(X)β(2)-expressing human epithelial kidney 293 cells recognized and bound to the fungal hyphae of SC5314 strain of C. albicans but not to the yeast form or to hyphae of a strain deficient in the fungal mannoprotein, Pra1. The binding of the integrin to the fungus was inhibited by β-glucans but not by mannans, implicating a lectin-like activity in recognition but distinct in specificity from that of α(M)β(2). Mice deficient in α(X)β(2) were more prone to systemic infection with the LD(50) fungal inoculum decreasing 3-fold in α(X)β(2)-deficient mice compared with wild-type mice. After challenging i.v. with 1.5 × 10(4) cell/g, 60% of control C57BL/6 mice died within 14 d compared with 100% mortality of α(X)β(2)-deficient mice within 9 d. Organs taken from α(X)β(2)-deficient mice 16 h postinfection revealed a 10-fold increase in fungal invasion into the brain and a 2-fold increase into the liver. These data indicate that α(X)β(2) is important for protection against systemic C. albicans infections and macrophage subsets in the liver, Kupffer cells, and in the brain, microglial cells use α(X)β(2) to control fungal invasion.  相似文献   

13.
The cell-surface expression of sialic acids in two isolates of Candida albicans was analyzed by thin-layer and gas chromatography, binding of lectins, colorimetry, sialidase treatment and flow cytofluorimetry with fluorescein-labeled lectins. N-acetylneuraminic acid (NANA) was the only derivative found in both strains of C. albicans grown in a chemically defined medium. Its identification was confirmed by mass spectrometry in comparison with an authentic standard. The density of sialic acid residues per cell ranged from 1. 6x10(6) to 2.8x10(6). The surface distribution of sialic acids over the entire C. albicans was inferred from labeling with fluorescein-Limulus polyphemus and Limax flavus agglutinins and directly observed by optical microscopy with (FITC)-Sambucus nigra agglutinin (SNA), abrogated by previous treatment of yeasts with bacterial sialidase. Sialidase-treated yeasts generated beta-galactopyranosyl terminal residues that reacted with peanut agglutinin. In C. albicans N-acetyl-neuraminic acids are alpha2,6- and alpha2,3-linked as indicated by yeast binding to SNA and Maackia amurensis agglutinin. The alpha2,6-linkage clearly predominated in both strains. We also investigated the contribution of sialic acids to the electronegativity of C. albicans, an important factor determining fungal interactions in vivo. Adhesion of yeast cells to a cationic solid phase substrate (poly-L-lysine) was mediated in part by sialic acids, since the number of adherent cells was significantly reduced after treatment with bacterial sialidase. The present evidence adds C. albicans to the list of pathogenic fungi that synthesize sialic acids, which contribute to the negative charge of fungal cells and have a role in their specific interaction with the host tissue.  相似文献   

14.
Besides mediating the viral entry process, the human immunodeficiency virus (HIV-1) envelope protein gp41 can bind to many host cell components and regulate cell functions. Using a yeast two-hybrid system, we screened a human bone marrow cDNA library and identified a novel gp41-binding protein, CD74 (the MHC class II-associated invariant chain). Here, we report possible biological effects mediated by interaction between gp41 and CD74. We found that HIV-1 gp41 could bind directly to host CD74 in HIV-1-infected cells, and the peptide 6358 derived from gp41 loop region (aa 597-611) could effectively block the gp41-CD74 interaction. As a result of this binding, recombinant soluble gp41 and gp41 peptide 6358 activated the CD74-mediated ERK/MAPK pathway and significantly enhanced HIV-1 infection in vitro. Conversely, the enhancing effect could be suppressed by the recombinant CD74 extracellular domain. These results reveal a novel mechanism underlying gp41 mediation of HIV-1 infection and replication.  相似文献   

15.
16.
The human immunodeficiency virus, type 1 (HIV-1), gp41 core plays an important role in fusion between viral and target cell membranes. We previously identified an HIV-1 gp41 core-binding motif HXXNPF (where X is any amino acid residue). In this study, we found that Asn, Pro, and Phe were the key residues for gp41 core binding. There are two NPF motifs in Epsin-1-(470-499), a fragment of Epsin, which is an essential accessory factor of endocytosis that can dock to the plasma membrane by interacting with the lipid. Epsin-1-(470-499) bound significantly to the gp41 core formed by the polypeptide N36(L8)C34 and interacted with the recombinant soluble gp41 containing the core structure. A synthetic peptide containing the Epsin-1-(470-499) sequence could effectively block entry of HIV-1 virions into SupT1 T cells via the endocytosis pathway. These results suggest that interaction between Epsin and the gp41 core, which may be present in the target cell membrane, is probably essential for endocytosis of HIV-1, an alternative pathway of HIV-1 entry into the target cell.  相似文献   

17.
Morphogenesis and adhesion to host tissues and medical devices contribute to the virulence of Candida albicans, the most common fungal pathogen isolated from humans. However, identification of molecular mechanisms of C. albicans adhesion and morphogenesis has been impaired by the lack of effective molecular and genetic tools available for this organism. Saccharomyces cerevisiae provides an attractive model system for studying C. albicans adhesion and morphogenesis because of its well-characterized genetics and gene expression systems. To gain insight into the genetic mechanisms of C. albicans adhesion and morphogenesis, we used a parallel plate flow chamber to screen and quantitatively characterize attachment to polystyrene of an adhesion-deficient nonfilamentous flo8Delta S. cerevisiae strain expressing a C. albicans genomic library. We identified six C. albicans genes that are capable of promoting cell adhesion and pseudohyphal development in S. cerevisiae. We also analyzed the ability of these adhesion-promoting genes to regulate the expression of FLO11, which encodes an endogenous S. cerevisiae adhesin. One C. albicans gene, EAP1, appears to directly mediate adhesion and morphogenesis while the remaining five (EAP2, SWI1, MSB1, AAF1, and TEC1) upregulate expression of endogenous S. cerevisiae adhesins. These results suggest that S. cerevisiae is a useful system for molecular characterization of factors that regulate C. albicans adhesion and morphogenesis and that parallel plate flow chamber-based adhesion assays can be used in conjunction with genetic screens to identify molecular mechanisms regulating fungal cell adhesion.  相似文献   

18.
Tsai PW  Yang CY  Chang HT  Lan CY 《PloS one》2011,6(3):e17755
Candida albicans is the major fungal pathogen of humans. Fungal adhesion to host cells is the first step of mucosal infiltration. Antimicrobial peptides play important roles in the initial mucosal defense against C. albicans infection. LL-37 is the only member of the human cathelicidin family of antimicrobial peptides and is commonly expressed in various tissues and cells, including epithelial cells of both the oral cavity and urogenital tract. We found that, at sufficiently low concentrations that do not kill the fungus, LL-37 was still able to reduce C. albicans infectivity by inhibiting C. albicans adhesion to plastic surfaces, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. Moreover, LL-37-treated C. albicans floating cells that did not adhere to the underlying substratum aggregated as a consequence of LL-37 bound to the cell surfaces. According to the results of a competition assay, the inhibitory effects of LL-37 on cell adhesion and aggregation were mediated by its preferential binding to mannan, the main component of the C. albicans cell wall, and partially by its ability to bind chitin or glucan, which underlie the mannan layer. Therefore, targeting of cell-wall carbohydrates by LL-37 provides a new strategy to prevent C. albicans infection, and LL-37 is a useful, new tool to screen for other C. albicans components involved in adhesion.  相似文献   

19.
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant alpha-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Delta and mnt1Delta single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Deltamnt2Delta mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.  相似文献   

20.
The opportunistic fungal pathogen Candida albicans can grow as yeast, pseudohyphae or true hyphae. C. albicans can switch between these morphologies in response to various environmental stimuli and this ability to switch is thought to be an important virulence trait. In Saccharomyces cerevisiae, the Grr1 protein is the substrate recognition component of an SCF ubiquitin ligase that regulates cell cycle progression, cell polarity and nutrient signaling. In this study, we have characterized the GRR1 gene of C. albicans. Deletion of GRR1 from the C. albicans genome results in a highly filamentous, pseudohyphal morphology under conditions that normally promote the yeast form of growth. Under hypha-inducing conditions, most cells lacking GRR1 retain a pseudohyphal morphology, but some cells appear to switch to hyphal-like growth and express the hypha-specific genes HWP1 and ECE1. The C. albicans GRR1 gene also complements the elongated cell morphology phenotype of an S. cerevisiae grr1Delta mutant, indicating that C. albicans GRR1 encodes a true orthologue of S. cerevisaie Grr1. These results support the hypothesis that the Grr1 protein of C. albicans, presumably as the F-box subunit of an SCF ubiquitin ligase, has an essential role in preventing the switch from the yeast cell morphology to a pseudohyphal morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号