首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
Six blackberry or hybrid berry cultivars and 19 raspberry cultivars were assessed for their infectibility with, and sensitivity to, graft inoculation with 10 distinct viruses found infecting Rubus in the UK. Cultivars were grafted with each of, two isolates of the pollen borne raspberry bushy dwarf virus (RBDV), five aphid borne viruses: black raspberry necrosis, raspberry leaf mottle (RLMV), raspberry leaf spot (RLSV), rubus yellow net and raspberry vein chlorosis (RVCV); and isolates of the nematode transmitted nepoviruses, arabis mosaic, raspberry ringspot, strawberry latent ringspot and tomato black ring. All tested cultivars were infectible with a resistance breaking isolate of RBDV but only about half of that number with the Scottish type isolate of the virus. The raspberry cvs Autumn Bliss, and occasionally Glen Garry and Glen Prosen, developed leaf yellowing symptoms following infection with RBDV, but none of the other infected cultivars showed obvious leaf symptoms when kept in a heated glasshouse during the growing season. All tested cultivars were infectible with each of the four viruses transmitted in nature by the aphid, Amphorophora idaei. Most were infected symptomlessly, but seven cultivars developed severe leaf spotting symptoms due to infection with RLMV or RLSV. All but one of the raspberry cultivars were infectible with RVCV, which is transmitted in nature by the aphid Aphis idaei, and almost all infected plants developed leaf symptoms; only one of the hybrid berry or blackberry cultivars tested was infected with RVCV. In tests with the four nepoviruses, all tested cultivars, except Tummelberry, were infectible with at least one or more of these viruses. However, cultivars responded differently to challenge inoculation with different isolates of individual nepoviruses. Several cultivars developed chlorotic leaf mottling following infection with some nepovirus isolates. The implications of these results for virus control are discussed in the light of the changing pattern of virus and virus vector incidence in the UK.  相似文献   

2.
The effectiveness of resistance to the aphid Amphorophora rubi in restricting the spread of aphid-borne viruses was assessed in a field experiment using six genotypes of red raspberry. In one block of the experiment, the genotypes alternated with rows of virus-infected Mailing Jewel raspberry, and in the other they alternated with virus-free Mailing Jewel. During 4 years, the numbers of A. rubi and the amount of 52V virus spread in the two blocks were similar, suggesting that this virus was mostly introduced from outside the plots. Lloyd George and Mailing Jewel raspberry became heavily infested with A. rubi and were rapidly infected with raspberry leaf mottle, raspberry leaf spot and 52V viruses. Glen Clova and Norfolk Giant raspberry, which contain minor genes for resistance to A. rubi, were infested with fewer A. rubi and virus spread more slowly in these cultivars. A. rubi were rare on Mailing Orion and an East Mailing raspberry selection (888/49) which have genes A1 and A10 respectively for resistance to A.rubi, and these plants remained largely free of virus. The role of minor and major gene resistance to A. rubi in restricting virus spread is discussed. A few Macrosiphum euphorbiae and Myzus ornatus were recorded on several of the raspberry genotypes.  相似文献   

3.
Rubus yellow net virus (RYNV) infects Rubus species and cultivars worldwide and is an essential component of raspberry veinbanding mosaic (RVBMD), a virus disease complex that causes serious decline in plant vigour and productivity. The virus is transmitted, probably in a semi‐persistent manner, by the large raspberry aphid, Amphorophora idaei in Europe, and A. agathonica in North America. The particles of RYNV are bacilliform in shape and measure 80–150 × 25–30 nm, similar to those of badnaviruses. A1.7 kb fragment of the viral DNA was amplified by PCR and then directly sequenced. Analysis of this sequence suggests that RYNV is possibly a distinct species in the genus Badnavirus and is most closely related to Gooseberry vein banding associated virus (GVBAV) and Spiraea yellow leaf spot virus, two other badnaviruses described recently. Using the sequence derived from the PCR‐amplified viral DNA fragment, RYNV‐specific primers were designed and used in PCR to assay for RYNV in a range of Rubus germplasm infected with RYNV, with other unrelated viruses and virus‐like diseases found in Rubus, and in healthy plants. RYNV was detected in all glasshouse cultures of RYNV‐infected plants, whether alone or in complex infections with other viruses, but not from healthy Rubus plants, nor from plants infected with other viruses. It was also detected in field‐grown raspberry plants with and without symptoms of RVBMD and in raspberry plants infected with RYNV by viruliferous A. idaei. RYNV was also detected by PCR in A. idaei following access feeds on RYNV‐infected plants of 1 h or more. PCR failed to amplify DNA from gooseberry infected with GVBAV confirming the specificity of the RYNV analysis. PCR detection of RYNV in dormant raspberry buds allows assays to be made outside the natural growing season, providing a useful application for plant introduction and quarantine programmes.  相似文献   

4.
The introduction into commerce of raspberry cultivars with major gene resistance to the large raspberry aphid, Amphorophora idaei, an important pest and virus vector on red raspberry in Europe, has been very effective both in decreasing pest numbers and greatly restricting infection with the viruses it transmits. However, biotypes of the aphid able to overcome these genes have developed in the field in recent years. Additionally, in field and laboratory tests, the response to aphid biotypes and recognised aphid strains of certain raspberry cultivars, such as Glen Prosen and Delight, differ markedly despite the fact that they are reputed to contain the same A. idaei‐resistance gene, A1. In attempts to understand the reasons for this difference in response, analysis was made of the segregation of progeny seedlings from crosses between A. idaei‐resistant and ‐susceptible cultivars to two recognised strains of the aphid. These studies showed that, as expected, cv. Autumn Bliss contained the A. idaei‐resistance gene, A10, and cvs Delight and Glen Prosen each contained the A. idaei‐resistance gene, A1. When progeny seedlings were assayed in a heated glasshouse as young plants and in an unheated Tygan house as 1 m tall plants, the segregation ratios for resistance and susceptibility to A. idaei were largely unchanged. However, when the resistance of individual progeny plants was assessed, c. 37% of the putative gene A1‐containing progeny and 9–23% of the putative gene A10‐containing progeny, behaved differently in these two environments. Experiments involving an A. idaei‐resistant and ‐susceptible parent cultivar showed that shading plants increased their susceptibility to A. idaei colonisation. Whilst this shading effect has implications for experimentally detecting A. idaei‐resistant progeny in segregating raspberry seedlings, it does not explain the difference in field resistance to A. idaei of cvs Delight and Glen Prosen. Such differences in the field seem best explained by the presence in these cultivars of ‘minor’ genes for A. idaei resistance and/or susceptibility that influences the effectiveness of gene A1.  相似文献   

5.
Enzyme-linked immunosorbent assay was used to measure the concentration of potato leafroll virus (PLRV) antigen in different parts of field-grown secondarily infected plants of three potato genotypes known to differ in resistance to infection. The antigen concentration in leaves of cv. Maris Piper (susceptible) was 10–30 times greater than that in cv. Pentland Crown or G 7445(1), a breeder's line (both resistant). Differences between genotypes in antigen concentration were smaller in petioles and tubers (5–10-fold) and in above-ground stems (about 4-fold), and were least in below-ground stems, stolons and roots (about 2-fold). PLRV antigen, detected by fluorescent antibody staining of tissue sections, was confined to phloem companion cells. In Pentland Crown, the decrease in PLRV antigen concentration in leaf mid-veins and petioles, relative to that in Maris Piper, was proportional to the decrease in number of PLRV-containing companion cells; this decrease was greater in the external phloem than in the internal phloem. The spread of PLRV infection within the phloem system seems to be impaired in the resistant genotypes. Green peach aphids (Myzuspersicae) acquired < 2800 pg PLRV/aphid when fed for 4 days on infected field-grown Maris Piper plants and < 58% of such aphids transmitted the virus to Physalis floridana test plants. In contrast, aphids fed on infected Pentland Crown plants acquired <120 pg PLRV/aphid and <3% transmitted the virus to P. floridana. The ease with which M. persicae acquired and transmitted PLRV from field-grown Maris Piper plants decreased greatly after the end of June without a proportionate drop in PLRV concentration. Spread of PLRV in potato crops should be substantially decreased by growing cultivars in which the virus multiplies to only a limited extent.  相似文献   

6.
In an approach to understand the mechanism(s) of resistance in raspberry to infestation by the aphid Amphorophora idaei, progeny plants segregating for the A. idaei resistance gene, A10, were bioassayed and dichloromethane extracts from the leaf surface were examined by capillary column gas chromatography (GC). No single GC peak was detected that was present in only the resistant progeny plants. Nevertheless, thirteen compounds present in all samples were quantified and identified by mass spectrometry. They were of four major classes; straight chain hydrocarbons, acetic acid esters of long chain alcohols, tocopherols and triterpenoid compounds, including α and β amyrin. Several of these compounds were not recorded previously in raspberry leaves. Linear discriminant analysis, applied to the standardised chromatographic data in an attempt to relate chemical composition to resistance, successfully partitioned 24 of the 26 plants into resistant and susceptible types as determined by bioassay. These data provide further evidence that resistance in raspberry to A. idaei is related to the chemical composition of the leaf surface.  相似文献   

7.
Patterns of spread of two aphid borne viruses, the non-persistently transmitted bean yellow mosaic virus (BYMV) and the persistently transmitted subterranean clover red leaf virus (SCRLV), were compared simultaneously in field plots of Vicia faba minor grown in a Mediterranean climate (winter-spring growing season, and dry summer). Spread from a primary source was mapped following the artificial introduction of virus alone, or virus with vector, at the centre of the plots. BYMV spread rapidly from the virus source whether or not vectors were introduced with the virus. By contrast, SCRLV spread from the source only when plants were also artificially infested with the vector Aulacorthum solani. An attempt was made to evaluate the importance of secondary spread of both viruses by assessing the degree of clumping of infected plants that occurred outside the primary sites of virus introduction. BYMV-infected plants were clumped in each treatment irrespective of whether the virus was introduced alone or with vector, as well as in control plots. Clumping of SCRLV occurred only when the vectors were introduced on virus source plants at the beginning of the experiment. Times of spread were determined both by exposing trap plants at 4-weekly intervals throughout the 30 month trial period, and by analysing the rates of spread in experimental plots between June and November in one growing season. Both viruses spread in the spring when vectors were flying, but negligible spread of the viruses was observed in the autumn despite aphid flight activity. Times of flight of the four main aphid vector species were continuously monitored with yellow water traps. A major spring and a minor autumn flight peak were observed for Aphis craccivora, Macrosiphum euphorbiae, Aulacorthum solani and Myzus persicae. Aphid flights occurred predominantly in weeks when the mean temperature was in the range 13–17°C. Rainfall above 7 mm per week appeared to affect flights only when mean weekly temperatures were outside the range 13–17°C.  相似文献   

8.

Background  

Raspberry breeding programmes worldwide aim to produce improved cultivars to satisfy market demands and within these programmes there are many targets, including increased fruit quality, yield and season, and improved pest and disease resistance and plant habit. The large raspberry aphid, Amphorophora idaei, transmits four viruses and vector resistance is an objective in raspberry breeding. The development of molecular tools that discriminate between aphid resistance genes from different sources will allow the pyramiding of such genes and the development of raspberry varieties with superior pest resistance. We have raised a red raspberry (Rubus idaeus) F1 progeny from the cross 'Malling Jewel' × 'Malling Orion' (MJ × MO), which segregates for resistance to biotype 1 of the aphid Amphorophora idaei and for a second phenotypic trait, dwarf habit. These traits are controlled by single genes, denoted (A 1) and (dw) respectively.  相似文献   

9.
Levels and components of resistance to Amphorophora idaei in raspberry cultivars containing different A. idaei resistance genes were studied under infestation tunnel, glasshouse and laboratory conditions. Each test consistently ranked raspberry cultivars, with increasing levels of resistance in the order, non-resistant (cv. Mailing Jewel), resistant cultivars containing minor genes, major gene A1, gene A10 (red raspberry) and gene A10 (black raspberry) respectively. Resistance was expressed in three different ways; decreased alatae settling and feeding, decreased apterae settling and decreased aphid fecundity and rate of nymphal development. Following exposure to a large population of alatae, significantly fewer aphids settled on A1, A10 and to a lesser extent, minor gene-containing cultivars, compared to cv. Mailing Jewel. More alatae settled on the top than the bottom zone of non-resistant, minor gene resistant and two of four A1-containing cultivars; alatae settling was low on all zones of A10-containing raspberries. Aphid fecundity and nymph development patterns on different cultivars and resistance classes were similar to those found for alatae settling. After 7 days reproduction more than 30% of the nymphs developed to third or fourth instar on cv. Mailing Jewel, whilst on minor gene and major gene-containing cultivars the total number of nymphs and the proportion of later instars decreased. On resistant cultivars the nymphs were found mainly on the middle and bottom leaf zones, compared to cv. Mailing Jewel. A rapid (48 h) screening test using floating leaflets was developed and, on the basis of apterae settling, ranked cultivars reliably; it was particularly effective in distinguishing moderate and strong resistance to strain 1 A. idaei. Gene A1-containing cultivars bred in England were much more resistant to strain 1 A. idaei than those bred in Scotland. Possible reasons for this difference are discussed, in relation to modified screening procedures and to the control of the viruses transmitted by this aphid vector.  相似文献   

10.
Seed-transmission of nematode-borne viruses   总被引:3,自引:0,他引:3  
Transmission through seed of crop and weed plants seems to be characteristic of nematode-borne viruses. It occurred with tomato black ring virus (TBRV) in nineteen species (thirteen botanical families), with arabis mosaic virus (AMV) in thirteen species (eleven families), with raspberry ringspot virus (RRV) in six species (five families), and also, in more limited tests, with tomato ringspot, cherry leaf roll and tobacco rattle viruses. A remarkable feature was that infected seedlings, except those containing tobacco rattle virus, often appeared healthy. The occurrence and extent of seed-transmission depended on both the virus and the host plant. In many progenies more than 10%, and in some 100%, of seedlings were infected. The viruses were transmitted through at least two or three generations of seed of those host species tested. After 6 years' storage, TBRV- and RRV-containing seed of Capsella bursa-pastoris and Stellaria media germinated to give infected seedlings. In controlled crossing experiments with strawberry and raspberry, virus was transmitted to seed from both male and female parents but, at least in raspberry, the presence of competing virus-free pollen much decreased the ability of pollen from infected plants to set seed. There was no evidence that healthy mother plants became infected when their flowers were pollinated with infected pollen.  相似文献   

11.
  • 1 Aphid population dynamics in crops are often driven by interactions with their host plants, which can be extensively influenced by environmental change. Protective environments (i.e. plastic tunnels) are now frequently used for soft fruit production, which may affect the localized climate and alter such interactions. This two year study on red raspberry (Rubus idaeus) addressed how protected environments affected two aphid species; the large raspberry aphid Amphorophora idaei (LRA) and the small raspberry aphid Aphis idaei (SRA).
  • 2 Temperatures were higher (up to 7–10 °C) in tunnels compared with the field. Plants in tunnels grew approximately 1.4 cm/week faster and had lower (approximately 35%) foliar amino acid concentrations than plants in the field.
  • 3 Aphids affected plant growth differently depending on growing environment; they promoted plant growth by 18–37% in tunnels, although they had no such effect in the field. Aphids reduced total and essential amino acid concentrations, with SRA causing greatest reductions (approximately 40% and 33%, respectively).
  • 4 Aphid population sizes were similar in both environments, although individual LRA were smaller in tunnels (30% smaller in 2007) compared with those in the field. We suggest that faster aphid development rates inside warmer tunnels were not realized as a result of the variable effects of the growing environment on amino acid composition.
  • 5 We conclude that the increasing use of protected environments in crop production will not necessarily cause predictable increases in aphid populations, although it may alter aphid–plant interactions in terms of aphid‐induced changes to plant growth.
  相似文献   

12.
Plants possess anti‐herbivore defences that could be exploited for crop protection. The potential for deploying physical defence traits for more sustainable pest management (i.e. reduced pesticide application) has not been fully realised. Using a perennial crop (red raspberry, Rubus idaeus), we take the novel approach of quantifying within‐ and between‐genotype variation in a resistance trait, leaf trichome density, to determine precisely the effect of trichomes on host plant preference and suitability for two shoot‐feeding arthropods, the European large raspberry aphid (Amphorophora idaei) and two‐spotted spider mite (Tetranychus urticae). Additionally, we tested whether this trait influenced searching behaviour of a generalist herbivore predator (lacewing larvae, Chrysoperla carnea). Although there was no consistent genotypic variation in R. idaeus suitability for T. urticae, our hypothesis that T. urticae would avoid high leaf trichome density was supported on certain genotypes. The deterrent effect was mainly on egg deposition rather than leaf selection by adults, with up to sixfold differences in leaf preference depending on the genotypes offered. By contrast, there was significant genotypic variation in R. idaeus suitability for A. idaei (10‐fold variation in aphid abundance), but, contrary to our prediction, aphid preference and infestation levels were unrelated to leaf trichome density. Instead, A. idaei performed best on vigorous genotypes, indicating that plant tolerance traits contributed to R. idaeus suitability for aphids. Leaf trichomes had little effect on the behaviour of the beneficial control agent C. carnea larvae. We conclude that physical anti‐herbivore defences, specifically leaf trichomes, could be deployed to deter particular arthropod pests. However, the mechanistic approach adopted here is necessary to avoid antagonistic effects on other pests or on natural enemies.  相似文献   

13.
14.
Apple mosaic virus and raspberry bushy dwarf virus were detected by ELISA in plantlets of red raspberry still growing in vitro. The plantlets were derived from explants which were excised from plants infected by either of the viruses mentioned. Detection by ELISA of prune dwarf virus in 4-month-old in vitro cultures of sour cherry was reported earlier. Thus, application of ELISA to tissue cultured plants in vitro seems to be an appropriate method for early detection of virus-infected plant cultures.  相似文献   

15.
Transmission of different nepoviruses through chickweed (Stellaria media) seed was differently affected by ambient temperature during seed production. Raspberry ringspot and tomato black ring (Scottish isolate) viruses were similarly and frequently transmitted at 14 , 18 and 22 oC, whereas arabis mosaic virus was transmitted most frequently at 14 oC, and strawberry latent ringspot and tomato black ring (German isolate) viruses at 22 oC. When infected by seed-borne nepoviruses, seedlings of S. media and other species were symptomless at 15–25 oC, and the viruses were therefore detected by inoculating sap to Chenopodium quinoa indicator plants. However, typical symptoms of arabis mosaic and tomato black ring viruses were induced by growing Nicotiana tabacum, N. clevelandii and C. quinoa seedlings infected with seed-borne virus at 33–37 oC during the third and fourth weeks after sowing, preceded and followed by periods at 15–25 oC. The proportion of N. tabacum seedlings developing symptoms was the same as that of untreated seedlings yielding sap-transmissible virus. Seed transmissibility of pseudo-recombinant isolates of raspberry ringspot and tomato black ring viruses, containing RNA-i from one virus strain and RNA-2 from another strain, depended greatly on the transmissibility of the strain contributing RNA-i. The source of RNA-2 had an additional but smaller influence. The satellite RNA (RNA-3) of tomato black ring virus was seed-transmitted in S. media and its occurrence in cultures did not affect the frequency of transmission of the virus. Results of testing the infectivity of extracts of seed from infected mother plants suggested that failure of seed transmission reflected failure to become established in the seed, not subsequent inactivation. Whereas seed transmissibility of raspberry ringspot virus is primarily dependent on information carried in RNA-i, transmissibility by nematode vectors, another property of major ecological importance, is determined by RNA-2. In the field, selection pressures presumably can act independently on the two parts of the genome but evidence was also obtained of selection for mutual compatibility of RNA-i and RNA-2.  相似文献   

16.
The fecundity of RNA viruses can be very high. Thus, it is often assumed that viruses have large populations, and RNA virus evolution has been mostly explained using purely deterministic models. However, population bottlenecks during the virus life cycle could result in effective population numbers being much smaller than reported censuses, and random genetic drift could be important in virus evolution. A step at which population bottlenecks may be severe is host-to-host transmission. We report here an estimate of the size of the population that starts a new infection when Cucumber mosaic virus (CMV) is transmitted by the aphid Aphis gossypii, based on the segregation of two CMV genotypes in plants infected by aphids that acquired the virus from plants infected by both genotypes. Results show very small effective numbers of founders, between one and two, both in experiments in which the three-partite genome of CMV was aphid transmitted and in experiments in which a fourth RNA, CMV satellite RNA, was also transmitted. These numbers are very similar to those published for Potato virus Y, which has a monopartite genome and is transmitted by aphids according to a different mechanism than CMV. Thus, the number of genomic segments seems not to be a major determinant of the effective number of founders. Also, our results suggest that the occurrence of severe bottlenecks during horizontal transmission is general for viruses nonpersistently transmitted by aphids, indicating that random genetic drift should be considered when modeling virus evolution.  相似文献   

17.
We compared the settling preferences and reproductive potential of an oligophagous herbivore, the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), in response to pea plants, Pisum sativum L. cv. ‘Aragorn’ (Fabaceae), infected with two persistently transmitted viruses, Pea enation mosaic virus (PEMV) and Bean leaf roll virus (BLRV), that differ in their distribution within an infected plant. Aphids preferentially oriented toward and settled on plants infected with PEMV or BLRV in comparison with sham‐inoculated plants (plants exposed to herbivory by uninfected aphids), but aphids did not discriminate between plants infected with the two viruses. Analysis of plant volatiles indicated that plants inoculated with either virus had significantly higher green leaf volatile‐to‐monoterpene ratios. Time until reproductive maturity was marginally influenced by plant infection status, with a trend toward earlier nymph production on infected plants. There were consistent age‐specific effects of plant infection status on aphid fecundity: reproduction was significantly enhanced for aphids on BLRV‐infected plants across most time intervals, though mean aphid fecundity did not differ between sham and PEMV‐infected plants. There was no clear pattern of age‐specific survivorship; however, mean aphid lifespan was reduced on plants infected with PEMV. Our results are consistent with predictions of the host manipulation hypothesis, extended to include plant viruses: non‐viruliferous A. pisum preferentially orient to virus‐infected host plants, potentially facilitating pathogen transmission. These studies extend the scope of the host manipulation hypothesis by demonstrating that divergent fitness effects on vectors arise relative to the mode of virus transmission.  相似文献   

18.
Bean yellow vein-banding virus (BYVBV) has been found occasionally in mixed infection with pea enation mosaic virus (PEMV) in spring-sown field beans (Vicia faba minor) in southern England. Glasshouse tests confirmed that, like PEMV, BYVBV is transmissible by manual inoculation and by aphids in the persistent manner. However, BYVBV can be transmitted by aphids only from plants that are also infected with a helper virus, usually PEMV. Thus after separation from PEMV by passage through Phaseolus vulgaris it was no longer aphid-transmissible. It became aphid-transmissible again only after re-mixing in plants with PEMV or with a substitute helper, bean leaf roll virus (BLRV). It was not transmitted by aphids that fed sequentially on plants singly infected with PEMV and BYVBV. Thus the interaction between BYVBV and PEMV (or BLRV) that enables BYVBV to be transmitted by aphids seems to occur only in doubly infected plants. However, it was not transmitted by aphids from plants doubly infected with BYVBV and broad bean wilt virus (BBWV). BYVBV and PEMV were transmitted more readily by Acyrthosiphon pisum than by Myzus persicae; neither virus was transmitted by Aphis fabae. Phenol extracts of BYVBV-infected leaves were more infective than phosphate buffer or bentonite-clarified extracts and were sometimes infective when diluted to 1/1000. The infectivity of BYVBV in phosphate buffer extracts of leaves singly infected with BYVBV, unlike that in extracts of leaves doubly infected with BYVBV and PEMV (or BLRV), was destroyed by treatment with organic solvents. BYVBV infected 11 of 28 plant species that were inoculated with phenol extracts; seven of the infected species were legumes. No transmission of BYVBV was detected through seed harvested from infected field bean plants. Isometric particles c. 30 nm in diameter were seen in extracts of plants doubly infected with BYVBV and PEMV but not in extracts of plants infected with BYVBV alone. Leaves of plants infected with BYVBV, alone or with PEMV, contained membrane-bound structures c. 50–90 nm in diameter associated with the tonoplast in cell vacuoles. These structures were not found in healthy leaves. BYVBV has several properties in common with other known aphid-borne viruses that are helper-dependent and transmitted in a persistent manner. Possibly, as suggested for some of them, aphid transmission of BYVBV depends on the coating of its nucleic acid with helper virus coat protein.  相似文献   

19.
The frequency with which the four virus-vector species of longidoroid nematodes occurring in Britain transmitted their associated plant viruses were compared in a series of experiments using a standard procedure. In these tests Xiphinema diversicaudatum proved an effective vector of British isolates of arabis mosaic virus and strawberry latent ringspot virus and Longidorus attenuatus of an isolate of tomato black ring virus from England. In comparison, isolates of raspberry ringspot virus and tomato blackring virus from Scotland and of raspberry ringspot virus from England were transmitted much less readily by their respective vectors, L. elongatus and L. macrosoma. These differences in ability to transmit virus were not related to differences in feeding access on the virus source- or bait-plants, in the extent to which virus was retained within the nematode feeding apparatus or in the frequency with which virus was recovered from Longidorus in concurrent slash tests. Three Scottish isolates of raspberry ringspot and tomato black ring viruses were transmitted equally infrequently by two populations of L. elongatus and the frequency with which virus was transmitted was not greatly increased when the species of source or bait plants was changed.  相似文献   

20.
Studies with Scottish isolates of carrot red leaf (CRLV) and carrot mottle (CMotV) viruses confirmed the dependency of CMotV on CRLV for transmission by the aphid Cavariella aegopodii. CMotV was transmitted by aphids only when the two viruses were present in the same source plant, and its transmission was not assisted by anthriscus yellows virus, which acts as a helper for parsnip yellow fleck virus. Some test plants became infected with CRLV alone, and a few with CMotV alone. In winter, aphid transmission of CRLV and CMotV was greatly increased when the source plants received supplementary lighting whereas the CMotV infectivity of sap was not increased. C. aegopodii acquired CRLV and CMotV after minimum acquisition access times of 30 min and inoculated them after minimum inoculation access times of 2 min. There was a minimum latent period of 7–18 h. The viruses were retained by the aphid after moulting and are therefore circulative in the vector, but were not transmitted to progeny insects. Aphids allowed 24 h to acquire the viruses continued to transmit them for at least 12 days, but some aphids allowed 6 h or less for virus acquisition ceased to transmit after 3 or 4 days. CRLV is considered a tentative member of the luteovirus group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号