首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Cell-mediated immune responses to glycoantigens have been largely uncharacterized. Protective T cell responses to the pathogenic yeast Cryptococcus neoformans are dependent on heavily mannosylated Ags termed mannoproteins. In the work presented, the innate immune response to mannoprotein was determined. Purified murine splenic dendritic cells (DC), B cells, and macrophages were used to stimulate mannoprotein-specific T cells. Only DC were capable of any measurable stimulation. Depletion of DC resulted in the abrogation of the T cell response. Human and murine DC rapidly captured fluorescent-labeled mannoprotein by a mannose receptor-mediated process. Using transfected cell lines, the type II C-type lectin receptor DC-specific ICAM-3-grabbing nonintegrin (CD209) was determined to have affinity for mannoprotein. Taken together with prior work demonstrating that mannoprotein was captured by the macrophage mannose receptor (CD206), these data suggest that multiple mannose receptors on DC recognize mannoprotein. Pulsing experiments demonstrated that DC captured sufficient mannoprotein over 2 h to account for 50% of total stimulation. Capture appeared dependent on mannose receptors, as competitive mannosylated inhibitors and calcium chelators each interfered with T cell stimulation. By confocal microscopy, intracellular mannoprotein trafficked to an endo-lysosomal compartment in DC, and at later time points extended into tubules in a similar fashion to the degradation marker DQ-OVA. Mannoprotein colocalized intracellularly with CD206 and CD209. These data suggest that DC provide the crucial link between innate and adaptive immune responses to C. neoformans via a process that is dependent upon the efficient uptake of mannoprotein by mannose receptors.  相似文献   

3.
The mannose receptor family comprises four members in mammals, Endo180 (CD280), DEC-205 (CD205), phospholipase A(2) receptor (PLA(2)R) and the mannose receptor (MR, CD206), whose extracellular portion contains a similar domain arrangement: an N-terminal cysteine-rich domain (CysR) followed by a single fibronectin type II domain (FNII) and 8-10 C-type lectin-like domains (CTLDs). These proteins mediate diverse functions ranging from extracellular matrix turnover through collagen uptake to homeostasis and immunity based on sugar recognition. Endo180 and the MR are multivalent transmembrane receptors capable of interacting with multiple ligands; in both receptors FNII recognizes collagens, and a single CTLD retains lectin activity (CTLD2 in Endo180 and CTLD4 in MR). It is expected that the overall conformation of these multivalent molecules would deeply influence their function as the availability of their binding sites could be altered under different conditions. However, conflicting reports have been published on the three-dimensional arrangement of these receptors. Here, we have used single particle electron microscopy to elucidate the three-dimensional organization of the MR and Endo180. Strikingly, we have found that both receptors display distinct three-dimensional structures, which are, however, conceptually very similar: a bent and compact conformation built upon interactions of the CysR domain and the lone functional CTLD. Biochemical and electron microscopy experiments indicate that, under a low pH mimicking the endosomal environment, both MR and Endo180 experience large conformational changes. We propose a structural model for the mannose receptor family where at least two conformations exist that may serve to regulate differences in ligand selectivity.  相似文献   

4.
Dendritic cells express DC-SIGN, a C-type lectin (CTL) that binds a variety of pathogens and facilitates their uptake for subsequent antigen presentation. DC-SIGN forms remarkably stable microdomains on the plasma membrane. However, inner leaflet lipid markers are able to diffuse through these microdomains suggesting that, rather than being densely packed with DC-SIGN proteins, an elemental substructure exists. Therefore, a super-resolution imaging technique, Blink Microscopy (Blink), was applied to further investigate the lateral distribution of DC-SIGN. Blink indicates that DC-SIGN, another CTL (CD206), and influenza hemagglutinin (HA) are all localized in small (~80 nm in diameter) nanodomains. DC-SIGN and CD206 nanodomains are randomly distributed on the plasma membrane, whereas HA nanodomains cluster on length scales up to several microns. We estimate, as a lower limit, that DC-SIGN and HA nanodomains contain on average two tetramers or two trimers, respectively, whereas CD206 is often nonoligomerized. Two-color Blink determined that different CTLs rarely occupy the same nanodomain, although they appear colocalized using wide-field microscopy. What to our knowledge is a novel domain structure emerges in which elemental nanodomains, potentially capable of binding viruses, are organized in a random fashion; evidently, these nanodomains can be clustered into larger microdomains that act as receptor platforms for larger pathogens like yeasts.  相似文献   

5.
Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses plasminogen activator (PLA) on its surface, which has been suggested to play a role in bacterial dissemination. It has been speculated that Y. pestis hijacks antigen-presenting cells, such as macrophages (MPhis) and dendritic cells, to be delivered to lymph nodes to initiate dissemination and infection. Both alveolar MPhis and pulmonary dendritic cells express a C-type lectin receptor, DEC-205 (CD205), which mediates antigen uptake and presentation. However, no ligand has been identified for DEC-205. In this study, we show that the invasion of alveolar MPhisby Y. pestis depends both in vitro and in vivo on the expression of PLA. DEC-205-expressing MPhis and transfectants, but not their negative counterparts, phagocytosed PLA-expressing Y. pestis and Escherichia coli K12 more efficiently than PLA-negative controls. The interactions between PLA-expressing bacteria and DEC-205-expressing transfectants or alveolar MPhis could be inhibited by an anti-DEC-205 antibody. Importantly, the blockage of the PLA-DEC-205 interaction reduced the dissemination of Y. pestis in mice. In conclusion, murine DEC-205 is a receptor for PLA of Y. pestis, and this host-pathogen interaction appears to play a key role in promoting bacterial dissemination.  相似文献   

6.
C-type lectins are pattern-recognition receptors important for pathogen binding and uptake by APCs. Evidence is accumulating that integration of incoming cellular signals in APCs is regulated by grouping of receptors and signaling molecules into organized membrane complexes, such as lipid rafts and tetraspanin microdomains. In this study, we demonstrate that C-type lectin dectin-1 functionally interacts with leukocyte-specific tetraspanin CD37. Dectin-1 and CD37 colocalize on the surface of human APCs. Importantly, macrophages of CD37-deficient (CD37(-/-)) mice express decreased dectin-1 membrane levels, due to increased dectin-1 internalization. Furthermore, transfection of CD37 into a macrophage cell line elevated endogenous dectin-1 surface expression. Although CD37 deficiency does not affect dectin-1-mediated phagocytosis, we observed a striking 10-fold increase of dectin-1-induced IL-6 production in CD37(-/-) macrophages compared with wild-type cells, despite reduced dectin-1 cell surface expression. Importantly, the observed increase in IL-6 production was specific for dectin-1, because signaling via other pattern-recognition receptors was unaffected in CD37(-/-) macrophages and because the dectin-1 ligand curdlan was used. Taken together, these findings show that tetraspanin CD37 is important for dectin-1 stabilization in APC membranes and controls dectin-1-mediated IL-6 production.  相似文献   

7.
Although sialic acid has long been recognized as the primary receptor determinant for attachment of influenza virus to host cells, the specific receptor molecules that mediate viral entry are not known for any cell type. For the infection of murine macrophages by influenza virus, our earlier study indicated involvement of a C-type lectin, the macrophage mannose receptor (MMR), in this process. Here, we have used direct binding techniques to confirm and characterize the interaction of influenza virus with the MMR and to seek additional macrophage surface molecules that may have potential as receptors for viral entry. We identified the macrophage galactose-type lectin (MGL) as a second macrophage membrane C-type lectin that binds influenza virus and is known to be endocytic. Binding of influenza virus to MMR and MGL occurred independently of sialic acid through Ca2+-dependent recognition of viral glycans by the carbohydrate recognition domains of the two lectins; influenza virus also bound to the sialic acid on the MMR. Multivalent ligands of the MMR and MGL inhibited influenza virus infection of macrophages in a manner that correlated with expression of these receptors on different macrophage populations. Influenza virus strain A/PR/8/34, which is poorly glycosylated and infects macrophages poorly, was not recognized by the C-type lectin activity of either the MMR or the MGL. We conclude that lectin-mediated interactions of influenza virus with the MMR or the MGL are required for the endocytic uptake of the virus into macrophages, and these lectins can thus be considered secondary or coreceptors with sialic acid for infection of this cell type.Infection of host cells by influenza virus is initiated by attachment of virus to sialic acid residues on the host cell surface through the receptor-binding site at the distal tip of the viral hemagglutinin (HA) (43). After attachment, the virus is internalized by endocytosis, and acidification of the endosome triggers a conformational change in viral HA that results in fusion of the viral envelope and host cell membrane (34). At the cell surface, sialic acid residues are commonly found at the termini of oligosaccharide chains that are attached in O or N linkage to cell surface proteins; they are also an essential component of acidic glycosphingolipids (gangliosides) that are present in all mammalian cell membranes. Although the abundance of sialic acid on mammalian cells provides influenza virus with multiple potential receptors, virus attachment does not always lead to virus entry (5, 8, 46). Furthermore, sialic acid-independent infection of Madin-Darby canine kidney (MDCK) cells by influenza virus has been reported (35). The specific host cell molecules that serve as functional receptors (or coreceptors) for the infectious entry of influenza virus have yet to be defined.We have studied the infectious entry of influenza virus into macrophages (Mφ), which represents an early event in recognition of the virus by the innate immune system (23, 44). After intranasal infection of mice, influenza virus replicates productively in cells of the respiratory epithelium. Mφ are also infected and viral proteins are produced, but replication is abortive and no live progeny are released (32); infection of Mφ is thus a dead-end for the virus leading to a reduction in viral load. In addition, influenza virus infection of Mφ stimulates production and release of proinflammatory cytokines and alpha/beta interferon (28), which may assist in further limiting viral replication and spread within the respiratory tract. Depletion of airway Mφ from mice prior to intranasal influenza virus infection leads to increased virus titers in the lung, attesting to the important role of Mφ in early host defense against the virus (38, 44).We observed in a previous study (30) that influenza A virus strains differed in their ability to infect murine Mφ, strains carrying a more highly glycosylated hemagglutinin (HA) molecule being more efficient at infecting Mφ than less glycosylated strains, although binding of viruses to the Mφ cell surface was equivalent. Our investigation of this phenomenon indicated involvement of the Mφ mannose receptor MMR (CD206), a C-type lectin, in infectious viral entry (29, 30). The involvement of other receptors was not excluded, and our subsequent observation that influenza virus can infect the RAW 264.7 Mφ cell line, which does not express the MMR, indeed points to the existence of other routes of infectious entry of the virus into Mφ.In the present study we used direct binding methods to confirm and characterize the interaction of influenza virus with the MMR and to seek additional Mφ surface molecules that may have potential as receptors for viral entry. We identify the Mφ galactose-type lectin (MGL) as a second Mφ membrane C-type lectin that binds influenza virus and investigate its involvement in the infectious process.  相似文献   

8.
Many receptors for endocytosis recycle into and out of cells through early endosomes. We now find in dendritic cells that the DEC-205 multilectin receptor targets late endosomes or lysosomes rich in major histocompatibility complex class II (MHC II) products, whereas the homologous macrophage mannose receptor (MMR), as expected, is found in more peripheral endosomes. To analyze this finding, the cytosolic tails of DEC-205 and MMR were fused to the external domain of the CD16 Fcgamma receptor and studied in stable L cell transfectants. The two cytosolic domains each mediated rapid uptake of human immunoglobulin (Ig)G followed by recycling of intact CD16 to the cell surface. However, the DEC-205 tail recycled the CD16 through MHC II-positive late endosomal/lysosomal vacuoles and also mediated a 100-fold increase in antigen presentation. The mechanism of late endosomal targeting, which occurred in the absence of human IgG, involved two functional regions: a membrane-proximal region with a coated pit sequence for uptake, and a distal region with an EDE triad for the unusual deeper targeting. Therefore, the DEC-205 cytosolic domain mediates a new pathway of receptor-mediated endocytosis that entails efficient recycling through late endosomes and a greatly enhanced efficiency of antigen presentation to CD4(+) T cells.  相似文献   

9.
Minimally modified low density lipoprotein (mmLDL) is a pro-inflammatory and pro-atherogenic lipoprotein that, unlike profoundly oxidized LDL (OxLDL), is not recognized by scavenger receptors and thus does not have enhanced uptake by macrophages. However, here we demonstrate that mmLDL (as well as OxLDL) induces actin polymerization and spreading of macrophages, which results in such pro-atherogenic consequences as inhibition of phagocytosis of apoptotic cells but enhancement of OxLDL uptake. We also demonstrate for the first time that the lipopolysaccharide receptor, CD14, and toll-like receptor-4/MD-2 are involved in these mmLDL effects. Macrophages of the J774 cell line exhibited higher mmLDL binding and F-actin response than its CD14-deficient mutant, LR-9 cells. Similarly, Chinese hamster ovary cells transfected with human CD14 specifically bound mmLDL and responded with higher F-actin compared with control cells. Macrophages from C3H/HeJ mice, which have a point mutation in the Tlr4 gene, responded with lower F-actin to mmLDL and did not spread as well as macrophages from control animals. A significantly higher F-actin response was also observed in Chinese hamster ovary cells transfected with human toll-like receptor-4/MD-2 but not with TLR4 alone or TLR2. Thus, in addition to inhibition of phagocytosis, the recognition of mmLDL by macrophage lipopolysaccharide receptors results in convergence of cellular immune responses to products of microorganisms and to oxidation-specific self-antigens, which could both influence macrophage function and atherogenesis.  相似文献   

10.
11.
Engagement of the costimulatory molecule CD28 is an important step in the optimal activation of T cells. Nevertheless, the specific role of CD28 in the formation of the immunological synapse and cytoskeletal changes that occur upon TCR/CD3 complex engagement is still poorly understood. Using Ab-coated surfaces, we show that CD28 engagement in the absence of any other signal induced the formation of cytoplasmic elongations enriched in filamentous actin (F-actin), in this work called filopodia or microspikes. Such structures were specific for engagement of CD28 on mAb-coated surfaces because they could not be observed in surfaces coated with either poly(L-lysine) or anti-CD3 mAb. The signaling pathway coupling CD28 to cytoskeletal rearrangements required Src-related kinase activity and promoted Vav phosphorylation and Cdc42 activation independently of the zeta-chain-associated kinase (ZAP-70). CD28-induced filopodia required Cdc42 GTPase activity, but not the related Rho GTPase Rac1. Moreover, Cdc42 colocalized to areas of increased F-actin. Our results support a specific role for the activation of the small Rho GTPase Cdc42 in the actin reorganization mediated by CD28 in human T cells.  相似文献   

12.
13.
Dectin-1 is a natural killer (NK)-cell-receptor-like C-type lectin that is thought to be involved in innate immune responses to fungal pathogens. This transmembrane signalling receptor mediates various cellular functions, from fungal binding, uptake and killing, to inducing the production of cytokines and chemokines. These activities could influence the resultant immune response and can, in certain circumstances, lead to autoimmunity and disease. As I discuss here, understanding the molecular mechanisms behind these functions has revealed new concepts, including collaborative signalling with the Toll-like receptors (TLRs) and the use of spleen tyrosine kinase (SYK), that have implications for the role of other non-TLR pattern-recognition receptors in immunity.  相似文献   

14.
CD69 and CD23 are leukocyte receptors with distinctive pattern of cell expression and functional features that belong to different C-type lectin receptor subfamilies. To assess the functional equivalence of different domains of these structurally related proteins, a series of CD69/CD23 chimeras exchanging the carbohydrate recognition domain, the neck region, and the transmembrane and cytoplasmic domains were generated. Biochemical analysis revealed the importance of the neck region (Cys68) in the dimerization of CD69. Functional analysis of these chimeras in RBL-2H3 mast cells and Jurkat T cell lines showed the interchangeability of structural domains of both proteins regarding Ca2+ fluxes, serotonin release, and TNF-alpha synthesis. The type of the signal transduced mainly relied on the cytoplasmic domain and was independent of receptor oligomerization. The cytoplasmic domain of CD69 transduced a Ca2+-mediated signaling that was dependent on the extracellular uptake of Ca2+. Furthermore, a significant production of TNF-alpha was induced through the cytoplasmic domain of CD69 in RBL-2H3 cells, which was additive to that promoted via FcepsilonRI, thus suggesting a role for CD69 in the late phase of reactions mediated by mast cells. Our results provide new important data on the functional equivalence of homologous domains of these two leukocyte receptors.  相似文献   

15.
16.
An increasing number of C-type lectin receptors are being discovered on dendritic cells, but their signaling abilities and underlying mechanisms require further definition. Among these, dendritic cell immunoreceptor (DCIR) induces negative signals through an inhibitory immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail. Here we identify a novel C-type lectin receptor, dendritic cell immunoactivating receptor (DCAR), whose extracellular lectin domain is highly homologous to that of DCIR. DCAR is expressed similarly in tissues to DCIR, but its short cytoplasmic portion lacks signaling motifs like ITIM. However, a positively charged arginine residue is present in the transmembrane region of the DCAR, which may explain its association with Fc receptor gamma chain and its stable expression on the cell surface. Furthermore, cross-linking of DCAR in the presence of gamma chain activates calcium mobilization and tyrosine phosphorylation of cellular proteins. These signals are mediated by the immunoreceptor tyrosine-based activating motif (ITAM) of the gamma chain. Thus, DCAR is closely related to DCIR, but it introduces activating signals into antigen-presenting cells through its physical and functional association with ITAM-bearing gamma chain. The identification of this activating immunoreceptor provides an example of signaling via a dendritic cell-expressed C-type lectin receptor.  相似文献   

17.
A unique glycan-binding protein expressed in macrophages and some types of other immune cells is the mannose receptor (MR, CD206). It is an endocytic, transmembrane protein with multiple glycan-binding domains and different specificities in binding glycans. The mannose receptor is important as it has major roles in diverse biological processes, including regulation of circulating levels of reproductive hormones, homeostasis, innate immunity, and infections. These different functions involve the recognition of a wide range of glycans, and their nature is currently under intense study. But the mannose receptor is just one of many glycan-binding proteins expressed in macrophages, leading to an interest in the potential relationship between the macrophage glycome and how it may regulate cognate glycan-binding protein activities. This review focuses primarily on the mannose receptor and its carbohydrate ligands, as well as macrophages and their glycomes.  相似文献   

18.
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phlylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences have been submitted to the GenBank nucleotide sequence database under the accession number chicken CD69 (DQ156495), CD94/NKG2 (DQ156496), and CD94/NKG2 variant (DQ241793).  相似文献   

19.
CLECSF8 is a poorly characterized member of the "Dectin-2 cluster" of C-type lectin receptors and was originally thought to be expressed exclusively by macrophages. We show here that CLECSF8 is primarily expressed by peripheral blood neutrophils and monocytes and weakly by several subsets of peripheral blood dendritic cells. However, expression of this receptor is lost upon in vitro differentiation of monocytes into dendritic cells or macrophages. Like the other members of the Dectin-2 family, which require association of their transmembrane domains with signaling adaptors for surface expression, CLECSF8 is retained intracellularly when expressed in non-myeloid cells. However, we demonstrate that CLECSF8 does not associate with any known signaling adaptor molecule, including DAP10, DAP12, or the FcRγ chain, and we found that the C-type lectin domain of CLECSF8 was responsible for its intracellular retention. Although CLECSF8 does not contain a signaling motif in its cytoplasmic domain, we show that this receptor is capable of inducing signaling via Syk kinase in myeloid cells and that it can induce phagocytosis, proinflammatory cytokine production, and the respiratory burst. These data therefore indicate that CLECSF8 functions as an activation receptor on myeloid cells and associates with a novel adaptor molecule. Characterization of the CLECSF8-deficient mice and screening for ligands using oligosaccharide microarrays did not provide further insights into the physiological function of this receptor.  相似文献   

20.
The marginal zone (MZ) of the mouse spleen contains macrophages that express receptors that trap pathogens, including the scavenger receptor macrophage receptor with a collagenous structure and the C-type lectin specific intracellular adhesion molecule-grabbing nonintegrin receptor 1 (SIGN-R1). We previously reported that expression of SIGN-R1 was decreased in CD19-deficient mice. In this study, we demonstrate that SIGN-R1 is expressed on a subset of macrophage receptor with a collagenous structure (MARCO)(+) macrophages. This subset is diminished when MZ B cells are absent due to either genetic developmental defects or following transient migration of B cells out of the MZ. When B cells return to the MZ, there is a delay in recovery of SIGN-R1-expressing macrophages. During this period, capture of Ficoll, which for the macrophages requires SIGN-R1, remains defective not only by the macrophages, but also by the B cells. Thus, MZ B cells regulate expression of molecules on macrophages that are important for trapping Ag, which, in turn, is required for Ag capture by the B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号