首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
B Rogerson  J Hackett  Jr  A Peters  D Haasch    U Storb 《The EMBO journal》1991,10(13):4331-4341
We have previously demonstrated that B lymphocyte specific somatic mutations are introduced into the variable regions of immunoglobulin kappa transgenes in two independent transgenic mouse lines. The frequency, distribution and nature of these mutations strongly suggest that they arose as a result of the process of somatic hypermutation, which is responsible, in part, for affinity maturation during an immune response. Unexpectedly, in these multiple copy transgenic lines, many of the transgene copies showed no evidence of somatic mutation. This paradox was addressed by determining the sequence of each transgene copy in several B cell hybridomas derived from a mouse line carrying three copies of the kappa transgene. It was found that the somatic hypermutation process in different B cells from the same mouse preferentially targets one, but not the same, transgene copy. We present a model, based on the pattern of this targeting, which links somatic hypermutation to the orientation of the Ig gene relative to the direction of DNA replication.  相似文献   

3.
Codon bias and plasticity in immunoglobulins   总被引:6,自引:1,他引:5  
Immunoglobulin genes experience Darwinian evolution twice. In addition to the germline evolution all genes experience, immunoglobulins are subjected, upon exposure to antigen, to somatic hypermutation. This is accompanied by selection for high affinity to the eliciting antigen and frequently results in a significant increase in the specificity of the responding population. The hypermutation mechanism displays a strong sequence specificity. Thus arises the opportunity to manipulate codon bias in a site-specific manner so as to direct hypermutation to those parts of the gene that encode the antigen-binding portions of the molecule and away from those that encode the structurally conserved regions. This segregation of mutability would clearly be advantageous; it would enhance the generation of potentially useful variants while keeping mutational loss to acceptably low levels. But it is not clear that the advantage gained would be large enough to produce a measurable effect within the background stochasticity of the evolutionary process. I have performed a pair of statistical tests to determine whether site- specific codon bias in human immunoglobulin genes is correlated with the sequence specificity of the somatic mutation mechanism. The sequence specificity of the mutator was determined by analysis of a database of published immunoglobulin intron sequences that had experienced somatic mutation but not selection. The site-specific codon bias was determined by analysis of published sequences of human germline immunoglobulin V genes. Both tests strongly suggest that evolution has acted to enhance the plasticity of immunoglobulin genes under somatic hypermutation.   相似文献   

4.
We have compared the pattern of somatic mutation in different immunoglobulin kappa transgenes and suggest that an element(s) located between 1 kb and 9 kb 3' of C kappa is necessary for somatic hypermutation of the antibody V gene. The sequences of transgenic and endogenous Ig V regions were determined in antigen-specific B cell hybridomas specific for 2-phenyloxazolone from independent lines of hyperimmunized transgenic mice. We analysed somatic mutation of the transgene both in hybridomas in which the transgenic kappa chain contributes to the antigen combining site as well as in hybridomas in which the transgene is a passenger with the expressed antibody being composed of endogenously-encoded heavy and light chains. In both cases, nucleotide changes in the transgene are correctly targeted to the V region and are absent from the C region. They accumulate at a similar rate to that in the endogenous Ig genes within the same cell and we find that, irrespective of whether or not the transgene kappa is directly selected by antigen, somatic mutation occurs at a similar rate and involves only single base substitutions. Furthermore, the pattern of mutations in passenger transgenes gives information about the intrinsic sequence specificities of the somatic hypermutation mechanism.  相似文献   

5.
6.
7.
8.
Hypermutation of immunoglobulin genes is a key process in antibody diversification. Little is known about the mechanism, but the availability of rapid facile assays for monitoring immunoglobulin hypermutation would greatly aid the development of culture systems for hypermutating B cells as well as the screening for individuals deficient in the process. Here we describe two such assays. The first exploits the non-randomness of hypermutation. The existence of a mutational hotspot in the Ser31 codon of a transgenic immunoglobulin V gene allowed us to use PCR to detect transgene hypermutation and identify cell populations in which this mutation had occurred. For animals that do not carry immunoglobulin transgenes, we exploited the fact that hypermutation extends into the region flanking the 3'-side of the rearranged J segments. We show that PCR amplification of the 3'-flank of VDJH rearrangements that involve members of the abundantly-used VHJ558 family provides a large database of mutations where the germline counterpart is unequivocally known. This assay was particularly useful for analysing endogenous immunoglobulin gene hypermutation in several mouse strains. As a rapid assay for monitoring mutation in the JH flanking region, we show that one can exploit the fact that, following denaturation/renaturation, the PCR amplified JH flanking region DNA from germinal centre B cells yields mismatched heteroduplexes which can be quantified in a filter binding assay using the bacterial mismatch repair protein MutS -Wagner et al. (1995) Nucleic Acids Res. 23, 3944-3948-. Such assays enabled us, by example, to show that antibody hypermutation proceeds in the absence of the p53 tumour suppressor gene product.  相似文献   

9.
10.
11.
Epigenetic programming of the rRNA promoter by MBD3   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

12.
13.
14.
DNA demethylation induced by the methyl-CpG-binding domain protein MBD3   总被引:1,自引:0,他引:1  
Brown SE  Suderman MJ  Hallett M  Szyf M 《Gene》2008,420(2):99-106
  相似文献   

15.
Adaptive (or stationary-phase) mutation is a group of phenomena in which mutations appear to occur more often when selected than when not. They may represent cellular responses to the environment in which the genome is altered to allow survival. The best-characterized assay system and mechanism is reversion of a lac allele on an F' sex plasmid in Escherichia coli, in which the stationary-phase mutability requires homologous recombination functions. A key issue has concerned whether the recombination-dependent mutation mechanism is F' specific or is general. Hypermutation of chromosomal genes occurs in association with adaptive Lac(+) mutation. Here we present evidence that the chromosomal hypermutation is promoted by recombination. Hyperrecombinagenic recD cells show elevated chromosomal hypermutation. Further, recG mutation, which promotes accumulation of recombination intermediates proposed to prime replication and mutation, also stimulates chromosomal hypermutation. The coincident mutations at lac (on the F') and chromosomal genes behave as independent events, whereas coincident mutations at lac and other F-linked sites do not. This implies that transient covalent linkage of F' and chromosomal DNA (Hfr formation) does not underlie chromosomal mutation. The data suggest that recombinational stationary-phase mutation occurs in the bacterial chromosome and thus can be a general strategy for programmed genetic change.  相似文献   

16.
DNA modification accompanying immunoglobulin gene expression was examined in various Abelson murine leukemia virus (A-MuLV)-transformed cell lines, which were able to differentiate from the mu- to mu+ stage or to undergo an isotype switch during in vitro culture. The C mu genes were relatively demethylated in the A-MuLV-transformed cell lines examined irrespective of whether or not the C mu genes were expressed. Normal IgM-bearing B cells, as well as a T cell line, also showed a similar DNA methylation pattern and the C mu genes were relatively demethylated. In one of the mu+ clones, however, the expressed C mu gene was heavily methylated. The DNA methylation pattern did not change and remained hypermethylated before and after gamma 2b expression in the two cell lines which underwent class switch to gamma 2b during in vitro culture, suggesting that expression of the gamma 2b gene was not accompanied by demethylation of the C gamma 2b gene. Taken together, these results indicate that DNA demethylation within and around the CH gene may not be necessary for its expression.  相似文献   

17.
18.
19.
We have compared the microsequence specificity of mutations introduced during somatic hypermutation (SH) and those introduced meiotically during neutral evolution. We have minimized the effects of selection by studying nonproductive (hence unselected) Ig V region genes for somatic mutations and processed pseudogenes for meiotic mutations. We find that the two sets of patterns are very similar: the mutabilities of nucleotide triplets are positively correlated between the somatic and meiotic sets. The major differences that do exist fall into three distinct categories: 1) The mutability is sharply higher at CG dinucleotides under meiotic but not somatic mutation. 2) The complementary triplets AGC and GCT are much more mutable under somatic than under meiotic mutation. 3) Triplets of the form WAN (W = T or A) are uniformly more mutable under somatic than under meiotic mutation. Nevertheless, the relative mutabilities both within this set and within the SAN (S = G or C) triplets are highly correlated with those under meiotic mutation. We also find that the somatic triplet specificity is strongly symmetric under strand exchange for A/T triplets as well as for G/C triplets in spite of the strong predominance of A over T mutations. Thus, we suggest that somatic mutation has at least two distinct components: one that specifically targets AGC/GCT triplets and another that acts as true catalysis of meiotic mutation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号