首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell wall teichoic acid structures of 22 staphylococci including 13 type strains were determined. Most of the strains contain a poly(polyolphosphate) teichoic acid with glycerol and/or ribitol as polyol component. The polyolphosphate backbone is partially substituted with various combinations of sugars and/or amino sugars. Most of the substituents occur in a monomeric form but some strains also contain dimers of N-acetylglucosamine as substituents. Staphylococcus hyicus subsp. hyicus NCTC 10350 and S. sciuri DSM 20352 revealed rather complex cell wall teichoic acids. They consist of repeating sequences of phosphate-glycerol-phosphate-N-acetylglucosamine. The amino sugar component is present in this case as a monomer or an oligomer (n less than or equal to 3). Moreover, the glycerol residues are partially substituted with N-acetylglucosamine. The cell wall teichoic acid of S. auricularis is a poly(N-acetylglucosaminyl-phosphate) polymer similar to that found in S. caseolyticus ATCC29750. The cell wall teichoic acid structures for type strains of S. auricularis, S. capitis, S. cohnii, S. haemolyticus, S. hominis, S. hyicus subsp. hyicus, S. sciuri, S. xylosus and S. warneri were determined for the first time in detail. The structures of some of the previously described teichoic acids had to be revised (S. epidermidis, S. simulans, S. aureus phage type 187).  相似文献   

2.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

3.
The resistance spectrum to bacteriophage phi 3T of different Bacillus subtilis 168/W23 strains hybrid for wall teichoic acids suggested that poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate), a so-called minor teichoic acid of strain 168, forms part of the receptor for this phage, and a serologically related group of phages. A representative sample of 25 mutants specifically resistant to phi 3T, obtained from a mutagenized culture by direct selection, were all found to have a greatly reduced galactosamine content. Relevant mutations in these strains were shown by PBS1 transduction and transformation to belong to two linkage groups; a minority, associated with an atypical colony morphology, were localized between sacA and purA, whereas the majority mapped between gtaB and tagB1 (formerly tag-1), a region containing all known genes involved in the synthesis of the major wall teichoic acid, poly(glycerol phosphate). The former mutations mapped in a new locus, gneA, characterized by a deficiency in UDP-N-acetylglucosamine 4-epimerase, while the latter ones, as well as the previously identified pha-3 (Estrela et al., 1986, Journal of General Microbiology 132, 411-415), map is a locus named gga. They are likely to affect membrane-bound enzymes involved in the synthesis of the galactosamine-containing teichoic acid. A possible biological role of this polymer is discussed.  相似文献   

4.
The cell wall of lactic acid bacteria has the typical Gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attribut es of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids.  相似文献   

5.
Cell walls of strains of Lactobacillus plantarum lacking the group D precipitinogen (a glucosylribitol teichoic acid) contain glucosylglycerol teichoic acid in which the glycosidic substituents are attached to the primary hydroxyl group of glycerol. Three distinct repeating units have been isolated from the teichoic acid preparation of strain C106, indicating either that the polymer is complex or that the wall contains a mixture of teichoic acids. Walls of streptobacteria differ from those of L. plantarum and contain neither teichoic acid nor diaminopimelic acid.  相似文献   

6.
D-[alpha-14C]]glucosyl phosphorylpolyprenol ([ 14C]Glc-P-prenol) was formed from UDP-D-[14C]glucose in each of the membrane systems obtained from Bacillus coagulans AHU 1631 and AHU 1634 and two Bacillus megaterium strains. Membranes of these B. coagulans strains, which possess beta-D-glucosyl branches on the repeating units in their major cell wall teichoic acids, were shown to catalyze the transfer of the glucose residue from [14C]Glc-P-prenol to endogenous polymer. On the other hand, membranes of B. coagulans AHU 1366, which has no glucose substituents in the cell wall teichoic acid, exhibited neither [14C]Glc-P-prenol synthetase activity nor the activity of transferring glucose from [14C]Glc-P-prenol to endogenous acceptor. The enzyme which catalyzes the polymer glycosylation in the former two B. coagulans strains was most active at pH 5.5 and in the presence of the Mg2+ ion. The apparent Km for [14C]Glc-P-prenol was 0.6 microM. Hydrogen fluoride hydrolysis of the [14C]glucose-linked polymer product yielded a major fragment identical to D-galactosyl-alpha(1----2)(D-glucosyl-beta(1----1/3)) glycerol, the dephosphorylated repeating unit in the major cell wall teichoic acids of these B. coagulans strains. This result, together with the behavior of the radioactive polymer in chromatography on Sepharose CL-6B, DEAE-Sephacel, and Octyl-Sepharose CL-4B, led to the conclusion that [14C]Glc-P-prenol serves as an intermediate in the formation of beta-D-glucosyl branches on the polymer chains of cell wall teichoic acids in B. coagulans.  相似文献   

7.
The structure of cell wall teichoic acids was studied by chemical methods and NMR spectroscopy in the type strains of two actinomycete species of the "Streptomyces griseoviridis" phenetic cluster: Streptomyces daghestanicus and Streptomyces murinus. S. daghestanicus VKM Ac-1722T contained two polymers having a 1,5-poly(ribitol phosphate) structure. In one of them, the ribitol units had alpha-rhamnopyranose and 3-O-methyl-alpha-rhamnopyranose substituents; in the other, each ribitol unit was carrying 2,4-ketal-bound pyruvic acid. Such polymers were earlier found in the cell walls of Streptomyces roseolus and Nocardiopsis albus, respectively; however, their simultaneous presence in the cell wall has never been reported. The cell wall teichoic acid of Streptomyces murinus INA-00524T was is a 1,5-poly(glucosylpolyol phosphate), whose repeating unit was [-6)-beta-D-glucopyranosyl-(1 --> 2)-glycerol phosphate-(3-P-]. Such a teichoic acid was earlier found in Spirilliplanes yamanashiensis. The 13C NMR spectrum of this polymer is presented for the first time. The results of the present investigation, together with earlier published data, show that the type strains of four species of the "Streptomyces griseoviridis" phenetic cluster differ in the composition and structure of their teichoic acids; thus, teichoic acids may serve as chemotaxonomic markers of the species.  相似文献   

8.
Anionic phosphate-containing cell wall polymers of bacilli are represented by teichoic acids and poly(glycosyl 1-phosphates). Different locations of phosphodiester bonds in the main chain of teichoic acids as well as the nature and combination of the constituent structural elements underlie their structural diversity. Currently, the structures of teichoic acids of bacilli can be classified into three types, viz. poly(polyol phosphates) with glycerol or ribitol as the polyol; poly(glycosylpolyol phosphates), mainly glycerol-containing polymers; and poly(acylglycosylglycerol phosphate), in which the components are covalently linked through glycosidic, phosphodiester, and amide bonds. In addition to teichoic acids, poly(glycosyl 1-phosphates) with mono- and disaccharide residues in the repeating units have been detected in cell walls of several Bacillus subtilis and Bacillus pumilus strains. The known structures of teichoic acids and poly(glycosyl 1-phosphates) of B. subtilis, B. atrophaeus, B. licheniformis, B. pumilus, B. stearothermophilus, B. coagulans, B. cereus as well as oligomers that link the polymers to peptidoglycan are surveyed. The reported data on the structures of phosphate-containing polymers of different strains of B. subtilis suggest heterogeneity of the species and may be of interest for the taxonomy of bacilli to allow differentiation of closely related organisms according to the “structures and composition of cell wall polymers” criterion  相似文献   

9.
Positively charged antimicrobial peptides with membrane-damaging activity are produced by animals and humans as components of their innate immunity against bacterial infections and also by many bacteria to inhibit competing microorganisms. Staphylococcus aureus and Staphylococcus xylosus, which tolerate high concentrations of several antimicrobial peptides, were mutagenized to identify genes responsible for this insensitivity. Several mutants with increased sensitivity were obtained, which exhibited an altered structure of teichoic acids, major components of the Gram-positive cell wall. The mutant teichoic acids lacked D-alanine, as a result of which the cells carried an increased negative surface charge. The mutant cells bound fewer anionic, but more positively charged proteins. They were sensitive to human defensin HNP1-3, animal-derived protegrins, tachyplesins, and magainin II, and to the bacteria-derived peptides gallidermin and nisin. The mutated genes shared sequence similarity with the dlt genes involved in the transfer of D-alanine into teichoic acids from other Gram-positive bacteria. Wild-type strains bearing additional copies of the dlt operon produced teichoic acids with higher amounts of D-alanine esters, bound cationic proteins less effectively and were less sensitive to antimicrobial peptides. We propose a role of the D-alanine-esterified teichoic acids which occur in many pathogenic bacteria in the protection against human and animal defense systems.  相似文献   

10.
Bacteriophage-resistant strains of Staphylococcus aureus H were isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Cell walls isolated from about half of these resistant strains were incapable of inactivating phages and were shown to lack N-acetyl-d-glucosamine (GlcNAc) in their cell wall teichoic acid. Apart from the lack of GlcNAc, two of these mutant strains were deficient in cell wall phosphorus and ester-linked d-alanine. These two strains were also found to be resistant to both phage K and a host-range mutant isolated from the parent phage. These two phages could lyse the other phage-resistant mutants which lacked GlcNAc in their teichoic acid. Cell walls from the remaining phage-resistant mutant strains did inactivate phages and were found to have normal cell wall teichoic acid. Although GlcNAc in teichoic acid was required for phage inactivation, no difference in phage inactivation ability was detected with cell walls isolated from strains of S. aureus having exclusively alpha- or exclusively beta-linked GlcNAc in their cell wall teichoic acid.  相似文献   

11.
Two natural variants of the actinomycin C-producing organism Actinomyces sp-26-115, i.e. H1 and H2 differ in their sensitivity to exogenic actinomycin, colony morphology, growth dynamics on the synthetic medium and stability to ultrasound and lysozyme. Both variants synthesize no actinomycin. Variant H1 is sensitive to exogenic actinomycin, while variant H2 is resistant to it. Variants H1 and H2 have some similarity in the composition of membrane proteins. Still, they differ in the protein molecular masses, which are equal to 600000--500000, 220000, 130000. The active variant A and nonactive variant H2 have the most similar compositions of membrane proteins. These variants are also close in their growth dynamics, colony morphology, sensitivity to ultrasound and lysozyme. The membranes of all the variants studied contain phosphatidyl ethanol amide as the main phospholipid component. Insignificant differences are observed only with respect to the minor components. The content of teichoic acids in the cell walls of variant H2 is very high, slightly changes during the developmental stage and insignificantly increases on addition of actinomycin to the medium. The cell wall of variant H1 contains less amounts of teichoic acids. During the developmental stage they are liberated from the wall at a higher rate than peptidoglycan. The sensitivity to actinomycin does not increase with an increase in the culture age. It is probable that teichoic acid of the cell wall is one of the factors providing resistance to actinomycin in variant H2. It may be considered as a barrier preventing transport of exogenic actinomycin into the cell.  相似文献   

12.
Investigations of cell wall teichoic acid structures of various staphylococci were carried out by a rapid method based on the gas-liquid chromatographic separation of products obtained after treatment of phenol-extracted cells with 70% hydrofluoric acid. In most of the strains teichoic acids of the poly(glycerolphosphate) and/or poly(ribitolphosphate) type were found. Teichoic acids of the poly(glycerolphosphate-N-acetylglucosaminephosphate) type and polymers consisting of N-acetylglucosaminephosphate were present in few strains.The results obtained by the rapid chemical screening method were compared with data obtained by serological analysis of teichoic acid structures using specific antisera and the lectin wheat germ agglutinin. Teichoic acid components occurring in low concentrations could only be detected with the chemical and not with the serological method. A number of strains of species of the genus Staphylococcus have been studied using these rapid methods. With a few exceptions, the teichoic acid structure proved to be a constant marker within a given species.Abbreviations used CIE counnter immunoelectrophoresis - GalNAc N-acetylgalactosamine - Glc glucose - GlcNAc N-acetylglucosamine - Gro glycerol - Rit ribitol  相似文献   

13.
The distribution of a pulse of teichoic acid-specific radiolabel between wall and membrane teichoic acids in pneumococci was constant over a subsequent chase period, suggesting that wall and membrane teichoic acids are biosynthesized simultaneously and independently.  相似文献   

14.
Teichoic acid-glycopeptide complexes were isolated from lysozyme digests of the cell walls of Bacillus coagulans AHU 1631, AHU 1634, and AHU 1638, and the structure of the teichoic acid moieties and their linkage regions was studied. On treatment with hydrogen fluoride, each of the complexes gave a hexosamine-containing disaccharide, which was identified to be glucosyl(beta 1----4)N-acetylglucosamine, in addition to dephosphorylated repeating units of the teichoic acids, namely, galactosyl(alpha 1----2)glycerol and either galactosyl(alpha 1----2)[glucosyl(alpha 1----1/3)]glycerol (AHU 1638) or galactosyl(alpha 1----2)[glucosyl(beta 1----1/3)]glycerol (AHU 1631 and AHU 1634). From the results of Smith degradation, methylation analysis, and partial acid hydrolysis, the teichoic acids from these strains seem to have the same backbone chains composed of galactosyl(alpha 1----2)glycerol phosphate units joined by phosphodiester bonds at C-6 of the galactose residues. The presence of the disaccharide, glucosyl(beta 1----4)N-acetylglucosamine, in the linkage regions between teichoic acids and peptidoglycan was confirmed by the isolation of a disaccharide-linked glycopeptide fragment from each complex after treatment with mild alkali and of a teichoic acid-linked saccharide from each cell wall preparation after treatment with mild acid. Thus, it is concluded that despite structural differences in the glycosidic branches, the teichoic acids in the cell walls of the three strains are linked to peptidoglycan through a common linkage saccharide, glucosyl (beta 1----4) N-acetylglucosamine.  相似文献   

15.
1. The effects of teichoic acids on the Mg(2+)-requirement of some membrane-bound enzymes in cell preparations from Bacillus licheniformis A.T.C.C. 9945 were examined. 2. The biosynthesis of the wall polymers poly(glycerol phosphate glucose) and poly(glycerol phosphate) by membrane-bound enzymes is strongly dependent on Mg(2+), showing maximum activity at 10-15mm-Mg(2+). 3. When the membrane is in close contact with the cell wall and membrane teichoic acid, the enzyme systems are insensitive to added Mg(2+). The membrane appears to interact preferentially with the constant concentration of Mg(2+) that is bound to the phosphate groups of teichoic acid in the wall and on the membrane. When the wall is removed by the action of lysozyme the enzymes again become dependent on an external supply of Mg(2+). 4. A membrane preparation that retained its membrane teichoic acid was still dependent on Mg(2+) in solution, but the dependence was damped so that the enzymes exhibited near-maximal activity over a much greater range of concentrations of added Mg(2+); this preparation contained Mg(2+) bound to the membrane teichoic acid. The behaviour of this preparation could be reproduced by binding membrane teichoic acid to membranes in the presence of Mg(2+). Addition of membrane teichoic acid to reaction mixtures also had a damping effect on the Mg(2+) requirement of the enzymes, since the added polymer interacted rapidly with the membrane. 5. Other phosphate polymers behaved in a qualitatively similar way to membrane teichoic acid on addition to reaction mixtures. 6. It is concluded that in whole cells the ordered array of anionic wall and membrane teichoic acids provides a constant reservoir of bound bivalent cations with which the membrane preferentially interacts. The membrane teichoic acid is the component of the system which mediates the interaction of bound cations with the membrane. The anionic polymers in the wall scavenge cations from the medium and maintain a constant environment for the membrane teichoic acid. Thus a function of wall and membrane teichoic acids is to maintain the correct ionic environment for cation-dependent membrane systems.  相似文献   

16.
Autolysin-defective pneumococci treated with inhibitory concentrations of penicillin and other beta-lactam antibiotics continued to produce non-cross-linked peptidoglycan and cell wall teichoic acid polymers, the majority of which were released into the surrounding medium. The released cell wall polymers were those synthesized by the pneumococci after the addition of the antibiotics. The peptidoglycan and wall teichoic acid chains released were not linked to one another; they could be separated by affinity chromatography on an agarose-linked phosphorylcholine-specific myeloma protein column. Omission of choline, a nutritional requirement and component of the pneumococcal teichoic acid, from the medium inhibited both teichoic acid and peptidoglycan synthesis and release. These observations are discussed in terms of plausible mechanisms for the coordination between the biosynthesis of peptidoglycan and cell wall teichoic acids.  相似文献   

17.
Efficient adsorption of bacteriophages SP 50 and 25 occurred only to bacilli that contained wall teichoic acid and neither phage bound to phosphate limited bacilli that contained teichuronic acid instead of teichoic acid. Though both phages require the presence of teichoic acid, their receptors are not identical. Efficient binding of phage 25 required the presence of greater proportions of teichoic acid in the wall and the receptor for this phage was destroyed when bacteria or isolated walls were heated at pH 4 whereas the ability of these samples to bind phage SP 50 was unaffected by such treatment. Efficient binding of phage SP 50 was not highly dependant on the presence of glucosyl substituents on the teichoic acid. Such substituents were required for phage 25 binding though their anomeric configuration appeared to be unimportant since the phages bound well to both strains W23 and 168, the wall teichoic acids of which carry glucosyl substituents of opposite anomeric configuration. The differeneces in the nature of the receptors may be of value in the use of the phages as probes for the location and distribution of teichoic acid in the wall.Non-Standard Abbreviation PAE Phage adsorption efficiency, as defined by Archibald and Coapes (1976)  相似文献   

18.
Cell wall and membrane teichoic acids from several bacteria formed soluble complexes with polysaccharides and bovine plasma in alkyl alcohol solutions. Polysaccharides which contain different monomeric units and anomeric configurations complexed with the teichoic acids, suggesting that the interaction is relatively nonspecific. Teichoic acids complexed glycogen or bovine plasma albumin in 50 to 97% ethanol solutions. The macromolecular association between teichoic acids and polysaccharides or proteins was independent of teichoic acid size over a threefold molecular weight range. Glycerol phosphates or an acid hydrolysate of teichoic acid would not complex to either glycogen or bovine plasma albumin in ethanol. The optimal interaction between glycogen and the Bacillus subtilis lipoteichoic acid occurred between pH 4.5 and 8.2. The ability of teichoic acids to bind polysaccharides and proteins in moderate dielectric constant solvents suggests that these polymers may serve as complexing agents for hydrophilic molecules found in membranes.  相似文献   

19.
The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.  相似文献   

20.
Summary In the present work the chemical cell wall composition and some other biochemical characteristics were studied in staphylococci with the intention of utilizing the data obtained in their classification.According to the cell wall peptidoglycans and teichoic acids, the 130 strains of staphylococci studied are divided into 10 major groups. This division of staphylococci into groups is in good agreement with their present classification only in some cases. All of the 47Staphylococcus aureus strains contain a cell wall peptidoglycan of thel-Lys-Gly5–6 type and ribitol teichoic acid. Coagulase-negative staphylococci are more heterogeneous and are divided according to their cell wall composition into 9 major groups. 21 strains of them are classified asS. epidermidis sensu stricto. They form a natural group and are distinguished by the occurrence of thel-Lys-Gly4–5,l-Ser0.5–1.8 peptidoglycan type, glycerol teichoic acid and anl-lactate dehydrogenase which is activated by fructose-1,6-diphosphate. 8 strains with peptidoglycan of thel-Lys-Gly4–5,l-Ser0.5–1.8 type and ribitol teichoic acid are labeled asS. saprophyticus. The remaining groups have not been given species names and require further extensive comparative study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号