首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
APH-1 and PEN-2 genes modulate the function of nicastrin and the presenilins in Caenorhabditis elegans. Preliminary studies in transfected mammalian cells overexpressing tagged APH-1 proteins suggest that this genetic interaction is mediated by a direct physical interaction. Using the APH-1 protein encoded on human chromosome 1 (APH-1(1)L; also known as APH-1a) as an archetype, we report here that endogenous forms of APH-1 are predominantly expressed in intracellular membrane compartments, including the endoplasmic reticulum and cis-Golgi. APH-1 proteins directly interact with immature and mature forms of the presenilins and nicastrin within high molecular weight complexes that display gamma- and epsilon-secretase activity. Indeed APH-1 proteins can bind to the nicastrin delta312-369 loss of function mutant, which does not undergo glycosylation maturation and is not trafficking beyond the endoplasmic reticulum. The levels of expression of endogenous APH-1(1)L can be suppressed by overexpression of any other members of the APH-1 family, suggesting that their abundance is coordinately regulated. Finally, although the absence of APH-1 destabilizes the presenilins, in contrast to nicastrin and PEN-2, APH-1 itself is only modestly destabilized in cells lacking functional expression of presenilin 1 or presenilin 2. Taken together, our data suggest that APH-1 proteins, and APH-1(1) in particular, may have a role in the initial assembly and maturation of presenilin.nicastrin complexes.  相似文献   

2.
Presenilin (PS1 and PS2) holoproteins are transiently incorporated into low molecular weight (MW) complexes. During subsequent incorporation into a higher MW complex, they undergo endoproteolysis to generate stable N- and C-terminal fragments. Mutation of either of two conserved aspartate residues in transmembrane domains inhibits both presenilin-endoproteolysis and the proteolytic processing of beta-amyloid precursor protein and Notch. We show that although PS1/PS2 endoproteolysis is not required for inclusion into the higher MW N- and C-terminal fragment-containing complex, aspartate mutant holoprotein presenilins are not incorporated into the high MW complexes. Aspartate mutant presenilin holoproteins also preclude entry of endogenous wild type PS1/PS2 into the high MW complexes but do not affect the incorporation of wild type holoproteins into lower MW holoprotein complexes. These data suggest that the loss of function effects of the aspartate mutants result in altered PS complex maturation and argue that the functional presenilin moieties are contained in the high molecular weight complexes.  相似文献   

3.
Nicastrin is an integral component of the high molecular weight presenilin complexes that control proteolytic processing of the amyloid precursor protein and Notch. We report here that nicastrin is most probably a type 1 transmembrane glycoprotein that is expressed at moderate levels in the brain and in cultured neurons. Immunofluorescence studies demonstrate that nicastrin is localized in the endoplasmic reticulum, Golgi, and a discrete population of vesicles. Glycosidase analyses reveal that endogenous nicastrin undergoes a conventional, trafficking-dependent maturation process. However, when highly expressed in transfected cells, there is a disproportionate accumulation of the endo-beta-N-acetylglucosaminidase H-sensitive, immature form, with no significant increase in the levels of the fully mature species. Immunoprecipitation revealed that presenilin-1 interacts preferentially with mature nicastrin, suggesting that correct trafficking and co-localization of the presenilin complex components are essential for activity. These findings demonstrate that trafficking and post-translational modifications of nicastrin are tightly regulated processes that accompany the assembly of the active presenilin complexes that execute gamma-secretase cleavage. These results also underscore the caveat that simple overexpression of nicastrin in transfected cells may result in the accumulation of large amounts of the immature protein, which is apparently unable to assemble into the active complexes capable of processing amyloid precursor protein and Notch.  相似文献   

4.
Nicastrin was the first binding partner of presenilin (PS) shown to be a critical component of the presenilin/gamma-secretase complex essential in development and differentiation, and in generation of Alzheimer's disease Abeta amyloid peptide. To investigate the function of this glycoprotein, we compared nicastrin and presenilin protein expression in various mouse tissues. Western blot analysis of PS1, PS2 and nicastrin indicates their expression levels are not coordinated. In adult mouse, nicastrin is highly expressed in muscle membranes, whereas presenilin levels are very low. By Blue Native electrophoresis, a PS1 complex of 400 kDa was detected in lung, brain, thymus and heart; nicastrin was also detected as a 400-kDa complex in brain but in muscle it was detected with a complex mobility of 240 and 290 kDa, suggesting association with alternate protein complexes. Immunocytochemistry confirms strong intracellular expression of nicastrin in skeletal muscle and blood vessel smooth muscle. These findings suggest a function for nicastrin in muscle other than participation in the gamma-secretase complex.  相似文献   

5.
Several lines of evidence have indicated that the presenilin proteins function within macromolecular complexes and are necessary for the regulated intramembranous proteolysis of certain type 1 transmembrane proteins, including the amyloid precursor protein, Notch, and p75. Data from multiple complementary experiments now suggest that there may be several distinct presenilin complexes. We show here that presenilin mutations and certain detergents affect the abundance and componentry of the presenilin complexes, and these structural effects correlate with their effects on gamma-secretase activity. Our data suggest that there are at least three complexes, including a approximately 150-kDa nicastrin-aph-1 complex (which is likely to be a precursor complex). There is a stable and abundant intermediate complex of approximately 440 kDa, which contains aph-1, pen-2, nicastrin, and PS1. However, it is the very low abundance, high mass (>/=670 kDa) heteromeric complexes that are associated with the highest gamma-secretase-specific activity.  相似文献   

6.
7.
Nicastrin, a type-I transmembrane glycoprotein, is a necessary component of the high molecular weight presenilin (PS) complexes that mediate intramembranous cleavage of beta-amyloid precursor protein (betaAPP) and Notch. Nicastrin undergoes trafficking-dependent glycosylation maturation, and PS1 interacts preferentially with these maturely glycosylated forms of nicastrin. We investigated the effects of differing levels of the immature and mature endoglycosidase-H-resistant forms of nicastrin on Abeta40- and Abeta42-peptide secretion in several cell lines stably expressing a mutant nicastrin (D336A/Y337A) that increases Abeta secretion. There was no correlation between Abeta secretion and the level of over-expression of the immature forms of nicastrin. The total level of mature nicastrin remained constant, but mutant nicastrin replaced endogenous mature nicastrin in varying degrees. Differences in the levels of mature mutant nicastrin positively correlated with Abeta secretion, but did not influence either betaAPP trafficking or processing by alpha- and beta-secretases. Proper trafficking and terminal maturation of nicastrin is therefore a necessary event for the regulated intramembranous proteolysis of betaAPP.  相似文献   

8.
The gamma-secretase complex processes substrate proteins within membranes and consists of four proteins: presenilin (PS), nicastrin, Aph-1 and Pen-2. PS harbours the enzymatic activity of the complex, and there are two mammalian PS homologues: PS1 and PS2. PS undergoes endoproteolysis, generating the N- and C-terminal fragments, NTF and CTF, which represent the active species of PS. To characterize the functional similarity between complexes of various PS composition, we analysed PS1, PS2, and chimeric PS composed of the NTF from PS1 and CTF from PS2, or vice versa, in assembly and function of the gamma-secretase complex. Chimeric PSs, like PS1 and PS2, undergo normal endoproteolysis when introduced into cells devoid of endogenous PS. Furthermore, PS2 CTF can, at least partially, restore processing in a truncated PS1, which cannot undergo endoproteolysis. All PS forms enable maturation of nicastrin and cleave full length Notch receptors, indicating that both PS1 and PS2 are present at the cell surface. Finally, when co-introduced as separate molecules, NTF and CTF of different PS origin reconstitute gamma-secretase activity. In conclusion, these data show that endoproteolysis, NTF-CTF interactions, and the assembly and activity of gamma-secretase complexes are very conserved between PS1 and PS2.  相似文献   

9.
Tandon A  Fraser P 《Genome biology》2002,3(11):reviews3014.1-reviews30149
The presenilins are evolutionarily conserved transmembrane proteins that regulate cleavage of certain other proteins in their transmembrane domains. The clinical significance of this regulation is shown by the contribution of presenilin mutations to 20-50% of early-onset cases of inherited Alzheimer's disease. Although the precise molecular mechanism underlying presenilin function or dysfunction remains elusive, presenilins are thought to be part of a complex of proteins that has 'γ-secretase cleavage' activity, which is clearly central in the pathogenesis of Alzheimer's disease. Mutations in presenilins increase the production of the longer isoforms of amyloid β peptide, which are neurotoxic and prone to self-aggregation. Biochemical studies indicate that the presenilins do not act alone but operate within large heteromeric protein complexes, whose components and enzymatic core are the subject of much study and controversy; one essential component is nicastrin. The presenilin primary sequence is remarkably well conserved in eukaryotes, suggesting some functional conservation; indeed, defects caused by mutations in the nemotode presenilin homolog can be rescued by human presenilin.  相似文献   

10.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

11.
The membrane-bound protein complex γ-secretase is an intramembranous protease whose substrates are a number of type I transmembrane proteins including the β-amyloid precursor protein (APP). A presenilin molecule is thought to be the catalytic unit of γ-secretase and either of two presenilin homologues, PS1 or PS2, can play this role. Mutations in the presenilins, apparently leading to aberrant processing of APP, have been genetically linked to early-onset familial Alzheimer’s disease. To look for possible molecular heterogeneity in presenilin/γ-secretase we examined the ability of proteinase K (PK) to digest endogenously expressed presenilins in intact endoplasmic reticulum vesicles. We demonstrate the existence of two physically different forms of γ-secretase-associated PS1, one that is relatively PK-sensitive and one that is significantly more PK-resistant. A similarly PK-resistant form of PS2 was not observed. We speculate that the structural heterogeneity we observe may underlie, at least in part, previous observations indicating the physical and functional heterogeneity of γ-secretase. In particular, our results suggest that there are significant differences between γ-secretase complexes incorporating PS1 and PS2. This difference may underlie the more dominant role of PS1 in the generation of β-amyloid peptides and in familial Alzheimer’s disease.  相似文献   

12.
Abundant biochemical and genetic evidence suggests that presenilins are catalytic components of gamma-secretase, the protease responsible for generating the Alzheimer amyloid beta-protein. However, the differential localization of presenilins to early secretory compartments and gamma-secretase substrates to late secretory compartments and the plasma membrane (the "spatial paradox") argues against this view. We investigated this issue by studying the localization of nicastrin, another putative gamma-secretase component, and its association with presenilin-1 into proteolytically active complexes. Glycosidase digests revealed that nicastrin exists in multiple glycoforms and is terminally sialylated, a modification often associated with the trans-Golgi network. Trafficking of nicastrin to the trans-Golgi network was confirmed by density gradient fractionation and immunofluorescence microscopy. In presenilin-deficient cells, however, nicastrin trafficking and maturation were abnormal, as the protein was restricted to early secretory compartments and failed to be sialylated. Mature sialylated nicastrin in trans-Golgi network fractions was complexed quantitatively with N- and C-terminal fragments of presenilin-1, whereas immature nicastrin present in early secretory compartments was not. Additionally, trans-Golgi network fractions contained the gamma-secretase substrate beta-amyloid precursor protein C83 and were enriched in presenilin-dependent gamma-secretase proteolytic activity. The results resolve the apparent spatial paradox by demonstrating that presenilin-nicastrin complexes and presenilin-dependent gamma-secretase activity are co-localized to a late secretory compartment. The findings provide further evidence that presenilin-containing complexes are the gamma-secretase, and indicate that presenilins also regulate gamma-secretase assembly.  相似文献   

13.
The transmembrane glycoprotein nicastrin is a component of presenilin (PS) protein complex that is involved in γ-cleavage of βAPP and site-3 cleavage of Notch. PS undergoes endoproteolysis, and the proteolytic fragments are incorporated into the high molecular weight protein complexes that are highly stabilized. Here we show that Endo H-resistant, N-glycosylated form of nicastrin (p150-NCT) is highly stabilized and selectively bound to PS fragments. Moreover, loss-of-function mutations of nicastrin inhibited formation of fully glycosylated p150-NCT as well as stabilization of nicastrin, suggesting that glycosylation and stabilization of nicastrin polypeptides are tightly correlated with its function.  相似文献   

14.
Numerous missense mutations in the presenilins are associated with the autosomal dominant form of familial Alzheimer disease. Presenilin genes encode polytopic transmembrane proteins, which are processed by proteolytic cleavage and form high-molecular-weight complexes under physiological conditions. The presenilins have been suggested to be functionally involved in developmental morphogenesis, unfolded protein responses and processing of selected proteins including the beta-amyloid precursor protein. Although the underlying mechanism by which presenilin mutations lead to development of Alzheimer disease remains elusive, one consistent mutational effect is an overproduction of long-tailed amyloid beta-peptides. Furthermore, presenilins interact with beta-catenin to form presenilin complexes, and the physiological and mutational effects are also observed in the catenin signal transduction pathway.  相似文献   

15.
Abstract : Missense substitutions in the presenilin 1 (PS1) and presenilin 2 (PS2) proteins are associated with early-onset familial Alzheimer's disease. We have used yeast-two-hybrid and coimmunoprecipitation methods to show that the large cytoplasmic loop domains of PS1 and PS2 interact specifically with three members of the armadillo protein family, including β-catenin, p0071, and a novel neuronal-specific armadillo protein—neural plakophilin-related armadillo protein (NPRAP). The PS1 : NPRAP interaction occurs between the arm repeats of NPRAP and residues 372-399 at the C-terminal end of the large cytoplasmic loop of PS1. The latter residues contain a single arm -like domain and are highly conserved in the presenilins, suggesting that they form a functional armadillo protein binding site for the presenilins.  相似文献   

16.
The gamma-secretase complex catalyzes the cleavage of the amyloid precursor protein in its transmembrane domain resulting in the formation of the amyloid beta-peptide and the cytoplasmic APP intracellular domain. The active gamma-secretase complex is composed of at least four subunits: presenilin (PS), nicastrin, Aph-1, and Pen-2, where the presence of all components is critically required for gamma-cleavage to occur. The PS proteins are themselves subjected to endoproteolytic cleavage resulting in the generation of an N-terminal and a C-terminal fragment that remain stably associated as a heterodimer. Here we investigated the effects of modifications on the C terminus of PS1 on PS1 endoproteolysis, gamma-secretase complex assembly, and activity in cells devoid of endogenous PS. We report that certain mutations and, in particular, deletions of the PS1 C terminus decrease gamma-secretase activity, PS1 endoproteolysis, and gamma-secretase complex formation. We demonstrate that the N- and C-terminal PS1 fragments can associate with each other in mutants having C-terminal truncations that cause loss of interaction with nicastrin and Aph-1. In addition, we show that the C-terminal fragment of PS1 alone can mediate interaction with nicastrin and Aph-1 in PS null cells expressing only the C-terminal fragment of PS1. Taken together, these data suggest that the PS1 N- and C-terminal fragment intermolecular interactions are independent of an association with nicastrin and Aph-1, and that nicastrin and Aph-1 interact with the C-terminal part of PS1 in the absence of an association with full-length PS1 or the N-terminal fragment.  相似文献   

17.
The Alzheimer disease-associated presenilin (PS) proteins apparently provide the active site of gamma-secretase, an unusual intramembrane-cleaving aspartyl protease. PSs principally occur as high molecular weight protein complexes that contain nicastrin (Nct) and additional so far unidentified components. Recently, PEN-2 has been implicated in gamma-secretase function. Here we identify PEN-2 as a critical component of PS1/gamma-secretase and PS2/gamma-secretase complexes. Strikingly, in the absence of PS1 and PS1/PS2, PEN-2 levels are strongly reduced. Similarly, PEN-2 levels are reduced upon RNA interference-mediated down-regulation of Nct. On the other side, down-regulation of PEN-2 by RNA interference is associated with reduced PS levels, impaired Nct maturation, and deficient gamma-secretase complex formation. We conclude that PEN-2 is an integral gamma-secretase complex component and that gamma-secretase complex components are expressed in a coordinated manner.  相似文献   

18.
gamma-Secretase is an atypical aspartyl protease that cleaves amyloid beta-precursor protein to generate Abeta peptides that are causative for Alzheimer disease. gamma-Secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1, and Pen-2. Pen-2 directly binds to transmembrane domain 4 of PS and confers proteolytic activity on gamma-secretase, although the mechanism of activation and its role in catalysis remain unknown. Here we show that an addition of amino acid residues to the N terminus of Pen-2 specifically increases the generation of Abeta42, the longer and more aggregable species of Abeta. The effect of the N-terminal elongation of Pen-2 on Abeta42 generation was independent of the amino acid sequences, the expression system and the presenilin species. In vitro gamma-secretase assay revealed that Pen-2 directly affects the Abeta42-generating activity of gamma-secretase. The elongation of Pen-2 N terminus caused a reduction in the water accessibility of the luminal side of the catalytic pore of PS1 in a similar manner to that caused by an Abeta42-raising gamma-secretase modulator, fenofibrate, as determined by substituted cysteine accessibility method. These data suggest a unique mechanism of Abeta42 overproduction associated with structural changes in the catalytic pore of presenilins caused commonly by the N-terminal elongation of Pen-2 and fenofibrate.  相似文献   

19.
Presenilins 1 (PS1) and 2 (PS2) are multispanning transmembrane proteins associated with familial Alzheimer disease (FAD). They are developmentally regulated, being expressed at highest levels during neuronal differentiation and are sustained at a lower level throughout life. We investigated the distribution and metabolism of endogenous murine PS1 as well as human wild-type (wtPS1) and the familial AD Met146Leu (M146L) mutant presenilins in dissociated cultures of hippocampal neurons derived from control and transgenic mice. We found that the PS1 endoproteolytic fragments and, to a lesser extent, the full-length protein, were expressed as early as day 3 post-plating. Both species increased until the cells were fully differentiated at day 12. Confocal microscopy revealed that presenilin is present in the Golgi and endoplasmic reticulum and, as in punctate, vesicle-like structures within developing neurites and growth cones. Using a human-specific PS1 antibody, we were able to independently examine the distribution of the transgenic protein which, although similar to the endogenous, showed some unique qualities. These included (i) some heterogeneity in the proteolytic fragments of human PS1; (ii) significantly reduced levels of full-length human PS1, possibly as a result of preferential processing; and (iii) a more discrete intracellular distribution of human PS1. Colocalization with organelle-specific proteins revealed that PS1 was located in a diffuse staining pattern in the MAP2-positive dendrites and in a punctate manner in GAP43-positive axons. PS1 showed considerable overlap with GAP43, particularly at the growth cones. Similar patterns of PS1 distribution were detected in cultures derived from transgenic animals expressing human wild-type or mutant presenilins. The studies demonstrate that mutant presenilins are not grossly different in their processing or distribution within cultured neurons, which may represent more physiological models as compared to transfection systems. Our data also suggest that the molecular pathology associated with PS1 mutations results from subtle alterations in presenilin function, which can be further investigated using these transgenic neuronal cell culture models.  相似文献   

20.
Active gamma-secretase complexes contain only one of each component   总被引:2,自引:0,他引:2  
Gamma-secretase is an intramembrane aspartyl protease complex that cleaves type I integral membrane proteins, including the amyloid beta-protein precursor and the Notch receptor, and is composed of presenilin, Pen-2, nicastrin, and Aph-1. Although all four of these membrane proteins are essential for assembly and activity, the stoichiometry of the complex is unknown, with the number of presenilin molecules present being especially controversial. Here we analyze functional gamma-secretase complexes, isolated by immunoprecipitation from solubilized membrane fractions and able to produce amyloid beta-peptides and amyloid beta-protein precursor intracellular domain. We show that the active isolated protease contains only one presenilin per complex, which excludes certain models of the active site that require aspartate dyads formed between two presenilin molecules. We also quantified components in the isolated complexes by Western blot using protein standards and found that the amounts of Pen-2 and nicastrin were the same as that of presenilin. Moreover, we found that one Aph-1 was not co-immunoprecipitated with another in active complexes, evidence that Aph-1 is likewise present as a monomer. Taken together, these results demonstrate that the stoichiometry of gamma-components presenilin:Pen-2:nicastrin:Aph-1 is 1:1:1:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号