首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to evaluate the change in cross-sectional area of the early corpus luteum (CL) and progesterone production in relation to subsequent pregnancy diagnosis. The cross-sectional area of the CL of 75 Friesian brood mares was measured by ultrasonography on Day 1 or 2 and Day 8 or 9 after ovulation. The change in cross-sectional area was expressed in a volume ratio. Plasma progesterone concentrations were measured on Days 8 to 9, and ultrasonography to determine pregnancy status was carried out on Day 17. The data obtained were analyzed by using a multiple logistic regression model. There were significant differences in the age, volume ratio and progesterone concentration between pregnant and nonpregnant mares. Pregnancy on Day 17 was related to the change in size of the CL up to Days 8 to 9 and progesterone concentration on Days 8 to 9. These differences between pregnant and nonpregnant mares might reflect the first luteal response to pregnancy.  相似文献   

2.
Three experiments were conducted to: (1) compare the effect of three oestradiol formulations on gonadotrophin release in ovariectomised cows; (2) compare the effects of either oestradiol-17beta (E-17beta) or oestradiol benzoate (EB), given at two doses, on the synchrony of ovarian follicular wave emergence in CIDR-treated beef cattle; and (3) determine the timing of ovulation of the dominant follicle of a synchronised follicular wave following administration of E-17beta or EB 24h after progesterone withdrawal. In Experiment 1, ovariectomised cows (n = 16) received a once-used CIDR on Day 0 (beginning of the experiment) and were allocated randomly to receive 5mg of E-17beta, EB or oestradiol valerate (EV) plus 100mg progesterone i.m. The CIDR inserts were removed on Day 7. There were effects of time, and a treatment-by-time interaction (P < 0.0001) for plasma concentrations of both oestradiol and FSH. Plasma oestradiol concentrations peaked 12h after treatment, with highest (P < 0.01) peak concentrations in cows given E-17beta; estradiol concentrations subsequently returned to baseline by 36 h in E-17beta-treated cows and by 96 h in EB- and EV-treated cows. Plasma FSH concentrations decreased by 12h after oestradiol treatment in all groups (P < 0.0001), reached a nadir at 24h, and increased by 60 h in all groups; plasma FSH reached higher (P < 0.02) concentrations in E-17beta-treated than in EB- or EV-treated cows. In Experiment 2, non-lactating Hereford cows (n = 29) received a new CIDR on Day 0 (beginning of the experiment), and were assigned randomly to receive 1 or 5mg of E-17beta or EB i.m. on Day 1. On Day 8, CIDR were removed and PGF was given. Transrectal ultrasonography was done once daily from 2 days before CIDR insertion to 2 days after CIDR removal, and then twice-daily to ovulation. Although there was no difference among groups in the interval from oestradiol treatment to follicular wave emergence (4.2 +/- 0.3 days; P = 0.5), 5mg of E-17beta resulted in the least variable interval to wave emergence (P < 0.005), compared with the other treatment groups which were not different (P = 0.1). For the interval from CIDR removal to ovulation, there were no differences among groups for either means (P = 0.5) or variances (P = 0.1). In Experiment 3, beef heifers (n = 32) received a once-used CIDR on Day 0 (beginning of the experiment) plus 100mg progesterone i.m. and were assigned randomly to receive 5mg E-17beta or 1mg EB i.m. On Day 7, CIDR were removed and all heifers received PGF. On Day 8 (24h after CIDR removal), each group was subdivided randomly to receive 1mg of either E-17beta or EB i.m. There was no effect of oestradiol formulation on interval from treatment to follicular wave emergence (4.1 +/- 0.2 days; P = 0.7) or on the median interval (76.6h; P = 0.7) or range (72-120 h; P = 0.08) from CIDR removal to ovulation. In summary, oestradiol treatments suppressed FSH in ovariectomised cows, with the duration of suppression dependent on the oestradiol formulation. Both E-17beta and EB effectively synchronised ovarian follicular wave emergence and ovulation in CIDR-treated cattle, and the interval from CIDR removal to ovulation did not differ in heifers given either E-17beta or EB 24h after CIDR removal.  相似文献   

3.
Although the mare corpus luteum (CL) is capable of aromatization, the expression of other enzymes involved in estradiol synthesis is not yet clear. This study examined the localization of P450C17 in the mare CL at different stages of its functional development. In ovaries from follicular phase mares P450C17 was localized in the theca cells of ovarian follicles. Following ovulation, no immunostaining for P450C17 was detected in the mature CLs of nonpregnant mares. In pregnant mares, no immunostaining for P450C17 was identified in the corpus luteum prior to secretion of eCG by the feto placental unit at Day 35 of pregnancy. The P450C17 was found to be expressed in CLs retrieved from Day 40 of pregnancy onwards. The changing expression of P450C17 raises the possibility that this may be a regulatory step for estrogen synthesis in the mare ovary.  相似文献   

4.
Two experiments were conducted to test the efficacy of altrenogest treatment in mares. The response to 15-d altrenogest treatment (Experiment 1) was characterized in 20 mares that were given 22 mg daily of altrenogest in oil (n = 10) or in gel (n = 10) from Day 10 to 25 after ovulation. In 17 mares, luteolysis occurred during altrenogest treatment (Day 17.7 +/- 0.5), while 2 mares retained their corpus luteum (CL), and 1 mare had a diestrous ovulation on Day 16, resulting in a prolonged luteal phase. Ten of the 17 mares in which the CL had spontaneously regressed returned to estrus after the end of treatment, and ovulated 5.7 +/- 0.8 d after the end of altrenogest treatment. Two of these 17 mares ovulated 2 and 3 d after the end of altrenogest treatment but ovulation was not accompanied by estrous behavior, and 5 mares ovulated during altrenogest treatment resulting in an interovulatory interval of 22.4 +/- 1.1 d (range: 20 to 25d). Five mares which ovulated during altrenogest treatment and 2 mares which ovulated during silent estrus after the end of altrenogest treatment failed to regress the CL around 14 d post ovulation, and had a prolonged luteal phase. In Experiment 2, the effect of altrenogest administered from luteolysis to ovulation on duration of the subsequent luteal period was analyzed. In 6 mares altrenogest was begun on Day 14 post ovulation and continued until the hCG-induced ovulation. The interval from ovulation during altrenogest treatment to spontaneous luteolysis was 45.6 +/- 2.4 d (range: 40 to 54d) in altrenogest-treated mares and was significantly longer than in 10 untreated control mares (14.5 +/- 0.3 d, range: 13 to 16d). The results suggest that the oil and gel altrenogest preparations are equally effective in modulating estrous behavior and time to estrus and ovulation. Altrenogest treatment started late in diestrus appears to result in a high incidence of ovulation during treatment and when luteolysis and ovulation occur during treatment; the subsequent luteal phase is frequently prolonged due to failure of regression of the CL.  相似文献   

5.
The viability of embryos before flushing from donor mares (n = 5) and after transfer to recipient mares (n = 7) was monitored in mare serum by detecting early pregnancy factor (EPF) using the rosette inhibition test (RIT). The EPF activity was measured in donor mares before and after natural mating at natural estrus; after ovulation on Days 2, 5 and 8; and after embryo flushing (Day 8) on Days 8, 9, 10 and 13 after ovulation. The collected embryos were transferred immediately after flushing. The EPF activity in recipient mares were measured on the day of transfer and after embryo transfer on Days 1, 2, 3 and 5. Pregnancy was confirmed on Day 12 to 14 after embryo transfer. The mean EPF activity of donor mares was increased to the pregnant level (> an RI titer score of 10) on Day 2 after ovulation. Two days after flushing the embryos, the EPF activity of donor mares had decreased to the nonpregnant level. Among the 7 recipient mares, 3 mares were diagnosed pregnant on Day 12 after embryo transfer with ultrasound. The EPF activity of the pregnant recipient mares was increased above the minimum level observed in pregnant mares on Days 2 to 3 after transfer. However, among the nonpregnant recipient mares after embryo transfer, the EPF activity of 3 mares remained at the pregnant level only 2 to 3 d and then declined to the nonpregnant level. In one recipient mare, EPF activity did not reach the pregnant level throughout the sample collection. The results of this study indicated that equine EPF can be detected in serum of pregnant mares as early as Day 2 after ovulation. From our observation, we conclude that the measurement of EPF activity is useful for monitoring the in vivo viability of equine embryos and early detection of embryonic death.  相似文献   

6.
A direct radioimmunoassay for estrogen conjugates (EC) was applied to paired blood and urine samples collected from 20 mares and compared against estrone (E(1)) and estradiol-17beta (E(2)) to monitor changes in estrogen production during ovulatory cycles and early pregnancy. Blood samples were taken daily from five mares through two consecutive ovulations and from six mares at 6-h intervals starting 48 hours prior to ovulation and continuing after ovulation had occurred. Blood samples were also collected daily or three times per week from conception until Day 60 of pregnancy in nine pregnant mares. The mean urinary EC, plasma EC and plasma E(2) dynamics were parallel in nonpregnant mares, with a 3-fold increase in mean urinary EC concentrations from baseline to the ovulatory peak, a 1.8-fold increase in mean plasma EC concentrations and a 1.4-fold increase in mean plasma E(2) concentrations. In early pregnancy, a two-fold increase in mean plasma E(1) and EC concentrations occurred in concert with a five-fold rise in mean urinary EC concentrations, whereas plasma E(2) did not change. Following hydrolysis and chromatographic separation, E(1) and E(2) were identified as the hydrolytic products in the urine of nonpregnant and pregnant mares; however, an unidentified estrogen was the major hydrolytic product in nonpregnant mares and pregnant mares prior to Day 38 of pregnancy. The increased resolution of the EC profiles compared with the profiles of other estrogen components indicates that the determination of EC in urine or plasma provides a useful alternative method for monitoring reproductive events in mares.  相似文献   

7.
The present study was designed to characterize and compare the physiology and ultrasonographic morphology of the corpus luteum (CL) during regression and resurgence following a single dose of native prostaglandin F2alpha (PGF) given 3 days after ovulation, with a more conventional treatment given 10 days after ovulation. On the day of pre-treatment ovulation (Day 0), horse mares were randomly assigned to receive PGF (Lutalyse; 10 mg/mare, i.m.) on Day 3 (17 mares) or Day 10 (17 mares). Beginning on either Days 3 or 10, follicle and CL data and blood samples were collected daily until post-treatment ovulation. Functional and structural regression of the CL in response to PGF treatment were similar in both the Day 3 and 10 groups, as indicated by an abrupt decrease in circulating concentrations of progesterone, decrease in luteal gland diameter and increase in luteal tissue echogenicity. As a result, the mean +/- S.E.M. interovulatory interval was shorter (P < 0.0001) in the Day 3 group (13.2 +/- 0.9 days) than in the Day 10 group (19.2 +/- 0.7 days). Within the Day 3 group, functional resurgence of the CL was detected in 75% of the mares (12 of 16) beginning 3 days after PGF treatment, as indicated by transient major (6 mares) and minor (6 mares) increases (P < 0.05 and < 0.1, respectively) in progesterone. Correspondingly, mean length of the interovulatory interval was longer (P < 0.03) in mares with major resurgence (15.8 +/- 1.6 days) than in mares with minor (11.2 +/- 1.2 days) and no resurgences (13.5 +/- 0.3 days) in progesterone. Structural resurgence of the CL in the Day 3 group and functional and structural resurgence in the Day 10 group were not detected. In conclusion, PGF treatment 3 days after ovulation resulted in structural and functional regression of the CL and hastened the interval to the next ovulation, despite post-treatment resurgences in progesterone.  相似文献   

8.
Prostaglandin E2 hastens oviductal transport of equine embryos.   总被引:1,自引:0,他引:1  
The hypothesis that treatment of pregnant mares with prostaglandin E2 (PGE2) hastens the oviductal transport of equine embryos was tested by treating bred mares with PGE2 on Day 3 after ovulation and subsequently measuring the rate of hastened oviductal transport (estimated by the uterine embryo recovery rate on Day 4 after ovulation). In a preliminary, noncontrolled experiment, oviductal transport was apparently not hastened after intramuscular, intrauterine, or intraperitoneal PGE2 administration to bred mares (0/6, 0/3, and 0/3 mares, respectively). Oviductal transport appeared to be hastened in 1/13 mares after a single intraoviductal administration of PGE2, and in 2/2 mares after continuous intraoviductal administration of PGE2. In a subsequent, controlled experiment, treatment with a continuous intraoviductal infusion of PGE2 hastened oviductal transport in significantly more (p less than 0.01) mares versus a continuous intraoviductal infusion of vehicle or no treatment (6/11 vs. 0/11 or 0/11 mares, respectively). Unfertilized oocytes and oviductal masses were also recovered from mare uteri after continuous intraoviductal PGE2 administration, but were not recovered after vehicle administration or no treatment. These results support the hypothesis that PGE2 treatment hastens the oviductal transport of equine embryos, and suggest a role for embryonic PGE2 in the initiation of selective oviductal transport in the mare.  相似文献   

9.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

10.
The objective was to determine reproductive performance following AI in beef heifers given estradiol to synchronize ovarian follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose PGF-based protocol. In Experiment 1, 561 cycling (confirmed by ultrasonography), Angus heifers received 500 microg cloprostenol, i.m. (PGF) twice, 14 days apart (days 0 and 14) and were equally allocated to four groups in a 2 x 2 factorial design. On Day 7, heifers received either 2 mg estradiol benzoate (EB) and 50 mg progesterone (P), i.m. in oil (EBP group) or no treatment (NT group). Half the heifers in each group received 1mg EB, i.m. in oil on Day 15 (24h after the second PGF treatment) with TAI 28 h later (52 h after PGF), and the other half received 100 microg GnRH, i.m. on Day 17 (72 h after PGF) concurrent with TAI. All heifers were observed for estrus twice daily from days 13 to 17; those detected in estrus more than 16 h before scheduled TAI were inseminated 4-16 h later and considered nonpregnant to TAI. Overall pregnancy rate (approximately 35 days after AI) was higher in heifers that received EBP than those that did not (61.6% versus 48.2%, respectively; P < 0.002); but was lower in heifers that received EB after PGF than those that received GnRH (50.0% versus 59.8%; P < 0.02). Although estrus was detected prior to TAI in 77 of 279 heifers (27.6%) treated with EBP (presumably due to induced luteolysis), they were inseminated and 53.2% became pregnant. Overall pregnancy rates were 51.4, 68.3, 45.0, and 55.0% in the NT/GnRH, EBP/GnRH, NT/EB, and EBP/EB groups, respectively (P < 0.05). In Experiment 2, 401 cycling, Angus heifers were used. The design was identical to Experiment 1, except that 1.5mg estradiol-17beta (E-17beta) plus 50mg progesterone (E-17betaP) and 1mg E-17beta were used in lieu of EBP and EB, respectively. All heifers receiving E-17beta 24h after the second injection of PGF (NT/E-17beta and E-17betaP/E-17beta) were TAI 28 h later without estrus detection, i.e. 52 h after PGF. Heifers in the other two groups received 100 microg GnRH, i.m. 72 h after PGF and were concurrently TAI; heifers in these two groups that were detected in estrus prior to this time were inseminated 4-12h later and considered nonpregnant to TAI. Estrus rate during the first 72 h after the second PGF treatment was higher (P < 0.05) in the E-17betaP/GnRH group (45.0%; n = 100) than in the NT/GnRH group (16.0%; n = 100), but conception rate following estrus detection and AI was not different (mean, 57.4%; P = 0.50). Overall pregnancy rate was not significantly different among groups (mean, 46.9%; P = 0.32). In summary, the use of EB or E-17beta to synchronize follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose, PGF-based protocol resulted in acceptable fertility to TAI. However, when 2mg EB was used to synchronize follicular wave emergence, early estrus occurred in approximately 28% of heifers, necessitating additional estrus detection. A combination of estrus detection and timed-AI in a two-dose PGF protocol resulted in highly acceptable pregnancy rates.  相似文献   

11.
Progesterone (P(4)) concentrations in the horse mare have conventionally been measured by radioimmunoassay (RIA). A commercial quantitative, competitive enzymelinked immunoassay (CELISA) has been recently introduced to the horse breeding industry along with a qualitative CELISA. The objectives of this study were to evaluate these two assays for their ability to detect transitional, cyclic, and pregnancy stages as well as early embryonic death in horse mares. The quantitative CELISA demonstrated a significant difference in P(4) levels during estrus and at Day 24 of pregnancy. There was a significant difference in P(4) concentrations in mares at ovulation and at Days 17 to 18 of pregnancy. However, there was no significant difference between pregnant and nonpregnant P(4) values from Day 1 until Day 16 of pregnancy. There was a significant difference in P(4) concentrations at ovulation and at the peak of the luteal phase in nonpregnant mares. There was also a significant difference between mares in the transitional period and Day 16 pregnant mares. The intraassay coefficient of variation was 3.1%, while the interassay coefficient of variation was 6.2%. The qualitative CELISA provided true positive diagnoses of 76.5% of the time, true negatives 67.3% of the time, false positives 4.1% of the time, and false negatives 3.1% of the time. The test sensitivity was 89.3% and its specificity was 95.7%. The CELISA provided 93% valid positive diagnoses of pregnancy on Day 21, 99% on Day 26, and 100% on Day 30. The use of either of these assay systems will provide a useful adjunct to any breeding program that utilizes one or more of the currently accepted diagnostic techniques, including teasing, palpation, and ultrasound. These assays introduce a new, inexpensive method of confirming the reproductive status in the mare.  相似文献   

12.
The effects of a single or double regimen of exogenous progesterone and estradiol-17beta (P/E, total dose 300 mg P/20 mg E) were investigated in 50 postparturient Quarter Horse mares. In Trial 1, at 1 and 24 h after foaling, mares were injected with progesterone (150 mg) and estradiol-17beta (10 mg) (n = 7) or 0.9% NaCl (control, n = 13). In Trial 2, within 12 h after foaling, mares were injected with progesterone (300 mg) and estradiol-17beta (20 mg) (n = 13) or 0.9% NaCl (control, n = 17). Mares were examined daily by palpation per rectum and transrectal ultrasonography to determine the day of ovulation. The largest cross sectional diameters of each uterine horn and uterine body were measured ultrasonographically on Day 15 postpartum. Mean uterine diameters did not differ between treatment groups (P > 0.05) in Trial 1, Trial 2 or for combined data for both Trials 1 and 2. For mares bred on the first postpartum estrus pregnancy rates did not differ (P > 0.05) between treatment groups (16/18, 89%) and controls (22/30, 81%) nor was there a difference in mean day to first postpartum ovulation (P > 0.05) between treated and control groups in Trial 1, Trial 2 or Trials 1 and 2 combined. However, fewer (P < 0.05) total P/E treated mares (0/20) ovulated prior to Day 10 postpartum than did control mares (6/30). Variance in days to ovulation was lower (P < 0.05) for P/E treated mares (var = 3.73 days) than for control mares (var = 7.64 days) for data combined from Trials 1 and 2.  相似文献   

13.
Treatment with PGF2alpha plus estradiol-17beta aborts 90-day pregnant ewes, whereas PGF2alpha or estradiol-17beta alone does not abort ewes. The objective of this experiment was to evaluate whether tamoxifen, an estrogen receptor antagonist, estradiol-17beta, prostaglandin F2alpha (PGF2alpha), indomethacin, or some of their interactions affected ovine uterine/placental secretion of PGF2alpha, estradiol-17beta or prostaglandins E (PGE), because a single treatment with PGF2alpha and estradiol-17beta given every 6 h aborts 90-day pregnant ewes. Concentrations of PGF2alpha in uterine venous blood were increased (P < or = 0.05) by estradiol-17beta, PGF2alpha + estradiol-17beta, and PGF2alpha + tamoxifen, and decreased (P < or = 0.05) by indomethacin or PGF2alpha + indomethacin at 72 h when compared to the 0 h samples. Concentrations of PGE in uterine venous blood were decreased (P < or = 0.05) by indomethacin and PGF2alpha + indomethacin and increased (P < or = 0.05) by PGF2alpha + estradiol-17beta at 72 h when compared to the 0 h samples. Concentrations of PGF2alpha in inferior vena cava blood at 6 h were increased (P < or = 0.05) by PGF2alpha either alone or in combination with indomethacin, tamoxifen, or estradiol-17beta, which is due to the PGF2alpha injected. Concentrations of PGF2alpha in inferior vena cava blood in PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased (P < or = 0.05) linearly over the 72-h sampling period and averaged 4.0 + 0.4 ng/ml. Concentrations of PGF2alpha in inferior vena cava blood of control, PGF2alpha, tamoxifen, PGF2alpha + indomethacin, PGF2alpha + tamoxifen, and estradiol-17beta-treated ewes did not differ (P > or = 0.05) and averaged 0.4 + 0.04 ng/ml. Profiles of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with vehicle, PGF2alpha, estradiol-17beta, tamoxifen, tamoxifen + PGF2alpha, or estradiol-17beta + PGF2alpha did not differ (P > or = 0.05). Concentrations of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with indomethacin or PGF2alpha + indomethacin were lower (P < or = 0.05) than in control ewes. Concentrations of estradiol-17beta in jugular venous plasma of PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased linearly and differed (P < or = 0.05) from controls. Profiles of estradiol-17beta in jugular venous plasma of PGF2alpha, indomethacin, tamoxifen, and PGF2alpha + tamoxifen and PGF2alpha + indomethacin, estradiol-17beta, and controls did not differ (P > or = 0.05). It is concluded that treatment with a single injection of PGF2alpha and estradiol-17beta given every 6 h causes a linear increase in PGF2alpha and estradiol-17beta.  相似文献   

14.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P >/= 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P /= 0.05) while PGE(2) increased (P /= 0.05) detectable quantities of PGF(2alpha) or PGE while day-90 ovine CL of pregnancy secreted PGE (P /= 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF(2alpha) by day-11 CL of the estrous cycle or day-90 CL of pregnancy (P >/= 0.05). It is concluded that PGE(2), not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF(2alpha).  相似文献   

15.
Quarterhorse mares were used to investigate effects of estradiol-17beta on uterine involution, duration of estrus, interval to ovulation, and fertility achieved by breeding on the first postpartum estrus. On the day of foaling, mares were injected with biodegradable poly (DL-lactide) microspheres containing either 100 mg estradiol-17beta (25 mares) or no drug (27 mares). The treatment period was considered to last for 12 to 15 d. Estrus was determined by teasing mares (n=16) with a stallion. Ovulation was detected by transrectal ultrasonographic examination of ovaries (n=48). On Days 6, 11 and 16 post partum, transrectal ultrasonography was used to measure cross-sectional diameters of the uterine body, uterine horns, and fluid within the uterine lumen (n=28). Uteri were swabbed for bacteriologic culture, and uterine biopsies were obtained from the previously gravid uterine horn on Days 11 and 16 post partum, for assessment of endometritis and morphometric analysis of endometrial histioarchitecture (n=19). Twenty-two mares were bred on foal-heat, and pregnancy was determined by transrectal ultrasonography on 14 to 16 and 30 to 35 d after breeding. With only one exception (diameter of previously gravid uterine horn on Day 11), mean values for all measures of uterine involution did not differ between treatment groups (P > 0.05). No differences were detected between treatment group means for length of estrus or interval to ovulation (P > 0.05). No differences were detected between treatment group liklihoods for recovery of potential bacterial pathogens, presence of endometritis, or presence of intrauterine fluid at 11 or 16 d post partum (P > 0.05). Pregnancy rate of mares treated with estradiol (5 11 ; 45%) was not different from that of control mares (9 11 ; 82%; P > 0.05). Estradiol treatment did not hasten uterine involution, increase duration of estrus, delay ovulation, or increase fertility in these postpartum mares.  相似文献   

16.
The equine embryonic vesicle is mobile on Days 12-14 (Day 0 = ovulation), when it is approximately 9-15 mm in diameter. Movement from one uterine horn to another occurs, on average, approximately 0.5 times per hour. Mobility ceases (fixation) on Days 15-17. Transrectal color Doppler ultrasonography was used to study the relationship of embryo mobility (experiment 1) and fixation (experiment 2) to endometrial vascular perfusion. In experiment 1, mares were bred and examined daily from Day 1 to Day 16 and were assigned, retrospectively, to a group in which an embryo was detected (pregnant mares; n = 16) or not detected (n = 8) by Day 12. Endometrial vascularity (scored 1-4, for none to maximal, respectively) did not differ on Days 1-8 between groups or between the sides with and without the corpus luteum. Endometrial vascularity scores were higher (P < 0.05) on Days 12-16 in both horns of pregnant mares compared to mares with no embryo. In pregnant mares, the scores increased (P < 0.05) between Day 10 and Day 12 in the horn with the embryo and were higher (P < 0.05) than scores in the opposite horn on Days 12-15. In experiment 2, 14 pregnant mares were examined from Day 13 to 6 days after fixation. Endometrial vascularity scores and number of colored pixels per cross-section of endometrium were greater (P < 0.05) in the endometrium surrounding the fixed vesicle than in the middle portion of the horn of fixation. Results supported the hypothesis that transient changes in endometrial vascular perfusion accompany the embryonic vesicle as the vesicle changes location during embryo mobility.  相似文献   

17.
Transrectal ultrasonography was used to quantitate uterine contractile activity during the estrous cycle and early pregnancy in pony mares (nonbred, n = 9; pregnant, n = 16). Continuous 1-min scans of longitudinal sections of the uterine body were videotaped, and uterine activity scores (1=minimal activity, 5=maximal activity) were assigned to each tape segment. There was a tendency (P<0.06) for a main effect of reproductive status (nonbred versus pregnant), a main effect of day (P<0.0001), and a reproductive status by day interaction (P<0.006). Uterine activity scores were higher (P<0.05) in pregnant mares on Days 1, 11, 12, and 17 (Day 0=day of ovulation) than in nonbred mares. Maximal activity in pregnant mares occurred on Days 11 to 14 during the reported period of maximal embryo mobility. Activity scores decreased (P<0.05) between the day prior to and the day of fixation (mean = Day 15) of the embryonic vesicle. Activity scores were maintained at an intermediate level for several days following fixation before declining to minimal levels by 7 d postfixation. A postovulatory decrease (P<0.04) in activity scores was observed in nonbred mares, but not in pregnant mares, between Days 0 and 1 followed by a progressive increase (P<0.03) between Days 2 and 4. Maximal activity in nonbred mares occurred during the late luteal phase (Days 13 to 14), corresponding temporally to the reported onset of luteolysis.  相似文献   

18.
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n=40) were submitted to a GnRH/PGF(2alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation=Day 0) were allocated to receive: no additional treatment (G(C); n=7); 3000IU of hCG on Day 5 (G(hCG); n=5); 5mg of estradiol-17beta on Day 12 (G(E2); n=6); or 3000IU of hCG on Day 5 and 5mg of estradiol-17beta on Day 12 (G(hCG/E2); n=5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P<0.01). Estradiol-17beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17beta), but were unable to extend the life-span of the CL in Nelore cows.  相似文献   

19.
Estradiol cypionate (ECP) was used in beef heifers receiving a controlled internal drug release (CIDR; insertion = Day 0) device for fixed-time AI (FTAI) in four experiments. In Experiment 1, heifers (n = 24) received 1mg ECP or 1mg ECP plus 50mg commercial progesterone (CP) preparation i.m. on Day 0. Eight or 9 days later, CIDR were removed, PGF was administered and heifers were allocated to receive 0.5mg ECP i.m. concurrently (ECP0) or 24h later (ECP24). There was no effect of treatment (P = 0.6) on mean (+/-S.E.M.) day of follicular wave emergence (3.9+/-0.4 days). Interval from CIDR removal to ovulation was affected (P<0.05) only by duration of CIDR treatment (88.3+/-3.8h versus 76.4+/-4.1h; 8 days versus 9 days, respectively). In Experiment 2, 58 heifers received 100mg progesterone and either 5mg estradiol-17beta or 1mg ECP i.m. (E-17beta and ECP groups, respectively) on Day 0. Seven (E-17beta group) or 9 days (ECP group) later, CIDR were removed, PGF was administered and heifers received ECP (as in Experiment 1) or 1mg EB 24h after CIDR removal, with FTAI 58-60h after CIDR removal. Follicular wave emergence was later (P<0.02) and more variable (P<0.002) in heifers given ECP than in those given E-17beta (4.1+/-0.4 days versus 3.3+/-0.1 days), but pregnancy rate was unaffected (overall, 69%; P = 0.2). In Experiment 3, 30 heifers received a CIDR device and 5mg E-17beta, with or without 100mg progesterone (P) i.m. on Day 0. On Day 7, CIDR were removed and heifers received ECP as described in Experiment 1 or no estradiol (Control). Intervals from CIDR removal to ovulation were shorter (P<0.05) in ECP0 (81.6+/-5.0h) and ECP24 (86.4+/-3.5h) groups than in the Control group (98.4+/-5.6h). In Experiment 4, heifers (n = 300) received a CIDR device, E-17beta, P, and PGF (as in Experiment 3) and after CIDR removal were allocated to three groups (as in Experiment 2), with FTAI 54-56h (ECP0) or 56-58h (ECP24 and EB24) after CIDR removal. Pregnancy rate did not differ among groups (overall, 63.6%, P = 0.96). In summary, although 1mg ECP (with or without progesterone) was less efficacious than 5mg E-17beta plus 100mg progesterone for synchronizing follicular wave emergence, 0.5mg ECP (at CIDR removal or 24h later) induced a synchronous ovulation with an acceptable pregnancy rate to fixed-time AI.  相似文献   

20.
The objective of this study was to determine whether periovulatory treatments with PGF2alpha affects the development of the CL, and whether the treatment was detrimental to the establishment of pregnancy. Reproductively sound mares were assigned randomly to one of the following treatment groups during consecutive estrus cycles: 1. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol (PGF2alpha analogue) on Days 0, 1, and 2 after ovulation (n=8), 2. 2 mL sterile water injection within 24 hours before artificial insemination and 500 microg cloprostenol on Days 0, 1, and 2 after ovulation (n=8); 3. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol on Day 2 after ovulation (n=8); or 4. 3,000 IU hCG within 24 hours before artificial insemination and 2 mL of sterile water on Days 0, 1, and 2 after ovulation (controls; n=8). Blood samples were collected from the jugular vein on Days 0, 1, 2, 5, 8, 11, and 14 after ovulation. Plasma progesterone concentrations were determined by the use of a solid phase 125I radioimmunoassay. All mares were examined for pregnancy by the use of transrectal ultrasonography at 14 days after ovulation. Mares in Group 1 and 2 had lower plasma progesterone concentrations at Day 2 and 5, compared to mares in the control group (P < 0.001). No difference was detected between group 1 and 2. Plasma progesterone concentrations in group 3 were similar to the control group until the day of treatment, but decreased after treatment and were significantly lower than the control group at Day 5 (P < 0.001). Plasma progesterone concentrations increased in all treatment groups after Day 5, and were comparable among all groups at Day 14 after ovulation. Cloprostenol treatment had a significant effect on pregnancy rates (P < 0.01). The pregnancy rate was 12.5% in Group 1, 25% in Group 2, 38% in Group 3, and 62.5% in Group 4. It was concluded that periovulatory treatment with PGF2alpha has a detrimental effect on early luteal function and pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号