首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D P Fan  B M Sefton 《Cell》1978,15(3):985-992
We have compared the mechanisms of entry into host cells of three enveloped viruses: Sendai virus, vesicular stomatitis virus (VSV) and Sindbis virus. Virus entry by membrane fusion should antigenically modify the surface of a newly infected cell in such a way that it will be killed by anti-viral antibody and complement. On the other hand, virus entry by a mechanism involving uptake by the cell of the whole virion should not make cells sensitive to antibody and complement. As expected, cells newly infected with Sendai virus were readily and completely lysed by anti-Sendai antibody and complement. In marked contrast, however, cells newly infected with either Sindbis virus or VSV were killed by anti-viral antibody and complement only when infected at an extremely high multiplicity of infection, in excess of 1000 plaque-forming units per cell. We favor the following explanation for these results with Sindbis virus and VSV: a very large majority of the Sindbis and VSV virions entered the infected cells by some means other than membrane fusion, presumably engulfment of the whole particle. Efficient entry by way of membrane fusion may therefore not be a general characteristic of enveloped viruses.  相似文献   

2.
Coil DA  Miller AD 《Journal of virology》2004,78(20):10920-10926
The envelope protein from vesicular stomatitis virus (VSV) has become an important tool for gene transfer and gene therapy. It is widely used mainly because of its ability to mediate virus entry into all cell types tested to date. Consistent with the broad tropism of the virus, the receptor for VSV is thought to be a ubiquitous membrane lipid, phosphatidylserine (PS). However, the evidence for this hypothesis is indirect and incomplete. Here, we have examined the potential interaction of VSV and PS at the plasma membrane in more detail. Measurements of cell surface levels of PS show a wide range across cell types from different organisms. We demonstrate that there is no correlation between the cell surface PS levels and VSV infection or binding. We also demonstrate that an excess of annexin V, which binds specifically and tightly to PS, does not inhibit infection or binding by VSV. While the addition of PS to cells does allow increased virus entry, we show that this effect is not specific to the VSV envelope. We conclude that PS is not the cell surface receptor for VSV, although it may be involved in a postbinding step of virus entry.  相似文献   

3.
Influenza virus and vesicular stomatitis virus (VSV) obtain their lipid envelope by budding through the plasma membrane of infected cells. When monolayers of Madin-Darby canine kidney (MDCK) cells, a polarized epithelial cell line, are infected with fowl plague virus (FPV), an avian influenza virus, or with VSV, new FPV buds through the apical plasma membrane whereas VSV progeny is formed by budding through the basolateral plasma membrane. FPV and VSV were isolated from MDCK host cells prelabeled with [32P]orthophosphate and their phospholipid compositions were compared. Infection was carried out at 31 degrees C to delay cytopathic effects of the virus infection, which lead to depolarization of the cell surface. 32P-labeled FPV was isolated from the culture medium, whereas 32P-labeled VSV was released from below the cell monolayer by scraping the cells from the culture dish 8 h after infection. At this time little VSV was found in the culture medium, indicating that the cells were still polarized. The phospholipid composition of the two viruses was distinctly different. FPV was enriched in phosphatidylethanolamine and phosphatidylserine and VSV in phosphatidylcholine, sphingomyelin, and phosphatidylinositol. When MDCK cells were trypsinized after infection and replated, non-infected control cells attached to reform a confluent monolayer within 4 h, whereas infected cells remained in suspension. FPV and VSV could be isolated from the cells in suspension and under these conditions the phospholipid composition of the two viruses was very similar. We conclude that the two viruses obtain their lipids from the plasma membrane in the same way and that the different phospholipid compositions of the viruses from polarized cells reflect differences in the phospholipid composition of the two plasma membrane domains.  相似文献   

4.
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.  相似文献   

5.
The entry of enveloped animal viruses into their host cells always depends on membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion between the viral envelope and the endosomal membrane at the acidic environment of this compartment. In this work, we evaluated VSV interactions with membranes of different phospholipid compositions, at neutral and acidic pH, using atomic force microscopy (AFM) operating in the force spectroscopy mode, isothermal calorimetry (ITC) and molecular dynamics simulation. We found that the binding forces differed dramatically depending on the membrane phospholipid composition, revealing a high specificity of G protein binding to membranes containing phosphatidylserine (PS). In a previous work, we showed that the sequence corresponding amino acid 164 of VSV G protein was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Here, we used this sequence to explore VSV–PS interaction using ITC. We found that peptide binding to membranes was exothermic, suggesting the participation of electrostatic interactions. Peptide–membrane interaction at pH 7.5 was shown to be specific to PS and dependent on the presence of His residues in the fusion peptide. The application of the simplified continuum Gouy–Chapman theory to our system predicted a pH of 5.0 at membrane surface, suggesting that the His residues should be protonated when located close to the membrane. Molecular dynamics simulations suggested that the peptide interacts with the lipid bilayer through its N-terminal residues, especially Val145 and His148. Fabiana A.Carneiro and Pedro A. Lapido-Loureiro contributed equally to this work An erratum to this article can be found at  相似文献   

6.
M A Whitt  P Zagouras  B Crise    J K Rose 《Journal of virology》1990,64(10):4907-4913
We have recently described an assay in which a temperature-sensitive mutant of vesicular stomatitis virus (VSV; mutant tsO45), encoding a glycoprotein that is not transported to the cell surface, can be rescued by expression of wild-type VSV glycoproteins from cDNA (M. Whitt, L. Chong, and J. Rose, J. Virol. 63:3569-3578, 1989). Here we examined the ability of mutant G proteins to rescue tsO45. We found that one mutant protein (QN-1) having an additional N-linked oligosaccharide at amino acid 117 in the extracellular domain was incorporated into VSV virions but that the virions containing this glycoprotein were not infectious. Further analysis showed that virus particles containing the mutant protein would bind to cells and were endocytosed with kinetics identical to those of virions rescued with wild-type G protein. We also found that QN-1 lacked the normal membrane fusion activity characteristic of wild-type G protein. The absence of fusion activity appears to explain lack of particle infectivity. The proximity of the new glycosylation site to a sequence of 19 uncharged amino acids (residues 118 to 136) that is conserved in the glycoproteins of the two VSV serotypes suggests that this region may be involved in membrane fusion. The mutant glycoprotein also interferes strongly with rescue of virus by wild-type G protein. The strong interference may result from formation of heterotrimers that lack fusion activity.  相似文献   

7.
In intact Madin-Darby canine kidney (MDCK) cell monolayers, vesicular stomatitis virus (VSV) matures only at basolateral membranes beneath tight junctions, whereas influenza virus buds from apical cell surfaces. Early in the growth cycle, the viral glycoproteins are restricted to the membrane domain from which each virus buds. We report here that phenotypic mixing and formation of VSV pseudotypes occurred when influenza virus-infected MDCK cells were superinfected with VSV. Up to 75% of the infectious VSV particles from such experiments were neutralized by antiserum specific for influenza virus, and a smaller proportion (up to 3%) were resistant to neutralization with antiserum specific for VSV. The latter particles, which were neutralized by antiserum to influenza A/WSN virus, are designated as VSV(WSN) pseudotypes. During mixed infections, both wild-type viruses were detected 1 to 2 h before either phenotypically mixed VSV or VSV(WSN) pseudotypes. Coincident with the appearance of cytopathic effects in the monolayer, the yield of pseudotypes rose dramatically. In contrast, in doubly infected BHK-21 cells, which do not show polarity in virus maturation sites and are not connected by tight junctions, VSV(WSN) pseudotypes were detected as soon as VSV titers rose to the minimum levels which allowed detection of pseudotypes, and the proportion observed remained relatively constant at later times. Examination of thin sections of doubly infected MDCK monolayers revealed that polarity in maturation sites was preserved for both viruses until approximately 12 h after inoculation with influenza virus, when disruption of junctional complexes was evident. Even at later periods, the majority of each virus type was associated with its normal membrane domain, suggesting that the sorting mechanisms responsible for directing the glycoproteins of VSV and influenza virus to separate surface domains continue to operate in doubly infected MDCK cells. The time course of VSV(WSN) pseudotype formation and changes in virus maturation sites are compatible with progressive mixing of viral glycoproteins at either intracellular or plasma membranes of doubly infected cells.  相似文献   

8.
We have investigated virus-lymphocyte interactions by using cloned subpopulations of interleukin-2-dependent effector lymphocytes maintained in vitro. Cloned lines of H-2-restricted hapten- or virus-specific cytotoxic T lymphocytes (CTL) and alloantigen-specific CTL were resistant to productive infection by vesicular stomatitis virus (VSV). In contrast, cloned lines of natural killer (NK) cells were readily and persistently infected by VSV, a virus which is normally highly cytolytic. VSV-infected NK cells continued to proliferate, express viral surface antigen, and produce infectious virus. Furthermore, persistently infected NK cells showed no marked alteration of normal cellular morphology and continued to lyse NK-sensitive target cells albeit at a slightly but significantly reduced level. The persistence of VSV in NK cells did not appear to be caused by the generation of temperature-sensitive viral mutants, defective interfering particles, or interferon. Consequently, studies comparing the intracellular synthesis and maturation of VSV proteins in infected NK and mouse L cells were conducted. In contrast to L cells, in which host cell protein synthesis was essentially totally inhibited by infection, the infection of NK cells caused no marked diminution in the synthesis of host cell proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of viral proteins from infected cells showed that the maturation rate and size of VSV surface G glycoprotein were comparable in L cells and NK cells. Nucleocapsid (N) protein synthesis also appeared to be unaffected in NK cells. In contrast, the viral proteins NS and M appeared to be selectively degraded in NK cell extracts. Mixing experiments suggested that a protease in NK cells was responsible for the selective breakdown of VSV NS protein. Finally, VSV-infected NK cells were resistant to lysis by virus-specific CTL, suggesting that persistently infected NK cells may harbor virus and avoid cell-mediated immune destruction in an immunocompetent host.  相似文献   

9.
Morphological and functional polarity of an epithelial thyroid cell line   总被引:6,自引:0,他引:6  
The thyroid epithelial cell line FRT in monolayer culture appeared to be strongly polarized by morphological criteria. Cells were connected by tight junctions, exposed microvilli toward the culture medium and formed domes at confluency. FRT cells were infected with vesicular stomatitis virus (VSV) and Sindbis virus and the budding polarity was examined 8 and 16 h after infection, respectively. VSV budding occurred preferentially from the basolateral domain of plasma membrane, while Sindbis virus budding was mostly apical. The distribution of VSV and Sindbis virus glycoproteins, as determined by the immuno-gold technique, correlated well with the budding polarity. Polarized budding was not observed in isolated cells in suspension.  相似文献   

10.
Entry of vesicular stomatitis virus (VSV), the prototype member of the rhabdovirus family, occurs by receptor-mediated endocytosis. Subsequently, during traversal through the endosomal compartments, the VSV G protein acquires a low-pH-induced fusion-competent form, allowing for fusion of the viral membrane with endosomal and lysosomal membranes. This fusion event releases genomic RNA into the cytoplasm of the cell. Here we provide evidence that the VSV G protein acquires a fusion-competent form during exocytosis in a polarized endometrial cell line, HEC-1A. VSV infection of HEC-1A cells results in high viral yields and giant cell formation. Syncytium formation is blocked in a concentration-dependent manner by treatment with the lysosomotropic weak base ammonium chloride, which raises intravesicular pH. Virus release is somewhat delayed by treatment with ammonium chloride, but virus yields gradually reach those of control cells. In addition, inhibition of vacuolar H(+)-ATPases by treatment with bafilomycin A1 also inhibited cell to cell fusion without altering virus yields. Virions released from infected HEC cells were themselves not fusion competent, since viral entry required an active H(+)-ATPase and a low-pH-induced conformational change in the viral G protein. Thus, the conformation change leading to fusion competence during exocytotic transport is reversible and reverts during or after release of the virion from the infected cell.  相似文献   

11.
The effect of certain metabolic inhibitors on the fusion of BHK-21 cells induced by vesicular stomatitis virus (VSV) was studied. The polykaryocyte formation in infected cells and virus growth were inhibited by 2-deoxy-D-glucose and D-glucosamine. Host-cell proteins synthesis was suppressed profoundly in both BHK-21-KB and B cells infected with VSV. On the other hand, glycoprotein synthesis was significantly enhanced during the polykaryocyte formation in BHK-21-KB cells, while it was suppressed in BHK-21-B cells which were not sensitive to cell fusion by VSV.  相似文献   

12.
When mouse L cells are infected for 22 hr with vesicular stomatitis virus (VSV), a ribonucleic acid-containing enveloped virus, greater than 70% of the major histocompatibility antigen (H-2), is no longer detectable by the method of inhibition of immune cytolysis. Infected cells prelabeled with (14)C-glucosamine also show a correspondingly greater loss of trichloroacetic acid-insoluble radioactivity than uninfected cells. The loss of H-2 antigenic activity is not due to the viral inhibition of host cell protein synthesis since cells cultured for 18 hr in the presence of cycloheximide have the same amount of H-2 activity as untreated controls. Also, cells infected with encephalomyocarditis virus, a picornavirus, show no loss of H-2 activity at a time when host cell protein synthesis is completely inhibited. VSV structural proteins associated in vitro with uninfected L-cell plasma membranes do not render H-2 sites inaccessible to the assay. Although antibodies may not combine with all the H-2 antigenic sites on the plasma membrane, anti-H-2 serum reacted with L cells before infection does not prevent a normal infection with VSV. H-2 activity can be detected in virus samples purified from the medium of infected L cells; this virus purified after being mixed with L-cell homogenates shows greater H-2 activity than virus purified after being mixed with HeLa cell homogenates. However, VSV made in HeLa cells shows no H-2 activity when mixed with L-cell homogenates.  相似文献   

13.
H Riedel  C Kondor-Koch    H Garoff 《The EMBO journal》1984,3(7):1477-1483
Vesicular stomatitis virus (VSV) enters the host cell by the receptor-mediated endocytotic pathway. This brings the virus particle into acidic vesicles inside the cell where infection occurs through a fusion event between the viral and the host vesicle membrane. In this work we have shown that the VSV glycoprotein (G) carries the fusion activity of this virus. The G protein was expressed on the surface of baby hamster kidney 21 cells from cloned cDNA which had been engineered into an expression vector and introduced into cell nuclei with the aid of a glass microneedle. A short (60 s) treatment with acid (pH less than or equal to 6.0) medium induced fusion of cells having G protein on their surface. For efficient G protein expression and cell-cell fusion we had to trim the 5' end of the G cDNA and to use as promoter the long terminal repeat of the mouse Moloney sarcoma virus.  相似文献   

14.
C G Dotti  K Simons 《Cell》1990,62(1):63-72
Cultured hippocampal neurons were infected with a temperature-sensitive mutant of vesicular stomatitis virus (VSV) and a wild-type strain of the avian influenza fowl plague virus (FPV). The intracellular distribution of viral glycoproteins was monitored by immunofluorescence microscopy. In mature, fully polarized neurons the VSV glycoprotein (a basolateral protein in epithelial MDCK cells) moved from the Golgi complex to the dendritic domain, whereas the hemagglutinin protein of FPV (an apically sorted protein in MDCK cells) was targeted preferentially, but not exclusively, to the axon. The VSV glycoprotein appeared in clusters on the dendritic surface, while the hemagglutinin was distributed uniformly along the axonal membrane. Based on the finding that the same viral glycoproteins are sorted in a polarized fashion in both neuronal and epithelial cells, we propose that the molecular mechanisms of surface protein sorting share common features in the two cell types.  相似文献   

15.
Using monoclonal antibodies and indirect immunofluorescence microscopy, we investigated the distribution of the M protein in situ in vesicular stomatitis virus-(VSV) infected MDCK cells. M protein was observed free in the cytoplasm and associated with the plasma membrane. Using the ts045 mutant of VSV to uncouple the synthesis and transport of the VSV G protein we demonstrated that this distribution was not related to the presence of G protein on the cell surface. Sections of epon-embedded infected cells labeled with antibody to the M protein and processed for indirect horseradish peroxidase immunocytochemistry revealed that the M protein was associated specifically with the basolateral plasma membrane. The G and M proteins of VSV have therefore evolved features which bring them independently to the basolateral membrane of polarized epithelial cells and allow virus to bud specifically from that membrane.  相似文献   

16.
Although no detectable interferon was produced when L cells were infected with wild-type VSV (VSV-o), considerable amounts of interferon were produced when cells were infected with UV-irradiated VSV-o at a multiplicity equivalent to 10 PFU/cell. Treatment of VSV-o with UV-light resulted in the marked reduction of the RNA synthesizing capacity and cytotoxity of the virus, and the UV-irradiated virus had neither infectivity nor interfering activity against homologous viruses. The amount of interferon induced by UV-VSV-o was markedly influenced by multiplicity of infection and incubation temperature. Less-virulent temperature-sensitive mutants (VSV-mp and VSV-sp) derived from L cells persistently infected with VSV induced interferon in L cells without treatment of the viruses with UV-light, but these viruses could not induce interferon if the infected cells were incubated at nonpermissive temperature, or if cells were infected at multiplicities of more than 10 PFU/cell. On the other hand, it was shown that treatment of cells with cycloheximide (100 μg/ml) delayed the expression of cell damage caused by non-irradiated VSV-o and resulted in the production of interferon when cycloheximide was removed from the cultures. These results indicate that VSV has intrinsically interferon-inducing capacity in L cells and can induce interferon if the induction is carried out under such condition that cell damage caused by VSV are suppressed or delayed. Furthermore, the effect of pretreatment of cells by interferon and undiluted passage of VSV-o on interferon induction was discussed in relation to persistent infection.  相似文献   

17.
Purification and some properties of human erythrocyte calpastatin   总被引:8,自引:0,他引:8  
By means of a new type of microinjection apparatus, which has a micropipette located in a hole through the optical axis of the condenser lens, we injected interferon (IFN) or 2',5'-oligoadenylate (2-5A) into mouse L cells, and observed their antiviral effects on the multiplication of vesicular stomatitis virus (VSV). After injection, cells were infected with VSV, and labeled with [3H]uridine in the presence of actinomycin D. The proportion of cells infected with VSV which carried radioactive virus-RNA was determined by autoradiography. IFN introduced directly into L cells had no effect on the virus growth. This result supports the idea that IFN molecules exert their effect from outside the cell membrane without penetrating into the cytoplasm. 2-5A, on the other hand, was able to inhibit the growth of VSV effectively when injected into L cells. The antiviral effect was dependent on the dose of 2-5A injected, and moreover the effect was transient, since it disappeared completely after 24-h incubation.  相似文献   

18.
Three different matrix (M) proteins termed M1, M2 and M3 have been described in cells infected with vesicular stomatitis virus (VSV). Individual expression of VSV M proteins induces an evident cytopathic effect including cell rounding and detachment, in addition to a partial inhibition of cellular protein synthesis, likely mediated by an indirect mechanism. Analogous to viroporins, M1 promotes the budding of new virus particles; however, this process does not produce an increase in plasma membrane permeability. In contrast to M1, M2 and M3 neither interact with the cellular membrane nor promote the budding of double membrane vesicles at the cell surface. Nonetheless, all three species of M protein interfere with the transport of cellular mRNAs from the nucleus to the cytoplasm and also modulate the redistribution of the splicing factor. The present findings indicate that all three VSV M proteins share some activities that interfere with host cell functions.  相似文献   

19.
We have used Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters to study the polarity of virus infection and maturation. The cells form epithelia-like monolayers, which display high (>1000 Ω cm2) electrical resistance and a cuboidal morphology. Vesicular stomatitis virus (VSV) was found to infect the monolayer at least 100 times more efficiently when applied through the filter to the basolateral surface than when applied to the apical surface. The avian influenza, fowl plague virus (FPV), infected the monolayer through either the apical or basolateral surface. The polarity of virus budding was evaluated by harvesting virus from the two sides of the monolayer. More than 99% of released influenza hemagglutinin titre was found on the apical side of the filter, while more than 98% of budded VSV was found on the basal side. This polarity of budding was retained through 10 hr of viral infection, as was the polarity of surface expression of viral envelope proteins revealed by immunofluorescence. The strong preference of VSV for basolateral maturation is paralleled by an equally strong preference for infection through the basolateral membrane of this polar epithelial cell.  相似文献   

20.
The scanning electron microscope (SEM) was used to detect changes in morphology of BSC-1 cells after infection with vesicular stomatitis virus (VSV) or herpes simplex virus. The morphological changes of the infected cells were related to the length of time of infection and to the virus used. Extensive alteration to the cytoplasm could be seen 24 and 48 hr after infection with 10 and 320 TCID(50) of VSV. Within 24 hr after infection with 1 TCID(50) of herpes simplex, a few nuclei were swollen. However, 72 hr after infection with 100 TCID(50) of herpesvirus, many nuclei were swollen and appeared in large aggregates, probably representing formation of a polykaryocyte. Corresponding samples stained with May-Grunwald-Giemsa were observed in the light microscope and morphological changes were compared to those seen with the SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号