首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The distribution and structure of the putative sites where enamel matrix is secreted from the ameloblast were studied by correlating the external topography with the distribution of organelles in Tomes' process cut in various planes of section. Both the interrod and rod secretion sites are associated with deep membrane infoldings. It was found that the interrod secretion site completely surrounds each ameloblast, and the marked interdigitation of adjacent cells results in a cooperative growth front for interrod enamel. In contrast, the rod secretion site is present on only one surface of the interdigitating portion of Tomes' process. Numerous granules were observed adjacent to the membrane infoldings associated with both sites, and granules were seen fused to membrane infoldings suggesting that the matrix of enamel is a merocrine secretion product.  相似文献   

2.
Binding sites for calcitonin (CT), as assayed by the displacable binding of [125-I] iodo salmon CT ([125-I]sCT), were found on a membrane fraction prepared from rat brain. The half times of association varied between 23 and 7 min as a function of the temperatures used in the incubation medium, ranging from 6° to 37°C. Salmon CT in amounts as low as 10?10 M inhibited the binding of [125-I]sCT to the membranes, whereas the virtually biologically inactive free acid of human CT and human CT sulfone did not affect the binding. The specific binding of [125-I]sCT to the membranes was directed to structural and/or conformational features in the COOH-terminal half of salmon CT. 133 to 8,900 times higher amounts of porcine CT and human CT and analogues thereof were required to achieve an inhibition of binding equal to that produced by salmon CT. Sixty-seven percent of specific binding of labeled hormone was not dissociable, even after 6 h of incubation with an excess of unlabeled hormone. [125-I]sCT extracted from the membranes was not degraded, as judged by gel permeation chromatography, and retained binding activity. Specific binding was highest in the hypothalamus, followed by the brainstem. It was intermediate in the midbrain-thalamus and the striatum, lower in the cortex and negligible in the hippocampus, and cerebellum and the spinal cord.  相似文献   

3.
T.F. Murray  M.E. Leid 《Life sciences》1984,34(20):1899-1911
The potencies of several dextrorotatory opioids, including four pairs of enantiomers, as inhibitors of specific [3H]PCP binding to rat brain synaptic membranes has been determined. Of the compounds tested unlabeled phencyclidine (PCP) was the most potent followed by (?)? cyclazocine > dextrorphan > (+) ketamine > (+) cyclazocine > (+)? SKF10,047 > levorphanol > dextromethorphan > (?) SKF10,047 > (?)? ketamine > (±) pentazocine and > (±) ethylketocyclazocine. The opiate mu receptor ligands, morphine, naloxone and naltrexone were virtually inactive as competitors of specific [3H]PCP binding. Unlike the stereostructural requirements for opiate mu receptors where activity resides predominantly in the levorotatory enantiomers, the present results support the contention that binding to the [3H]PCP labeled recognition site may reside in either the levorotatory or the dextrorotatory enantiomer. The specific binding of [3H]PCP which was defined as total binding minus that occurring in the presence of 10μM dextrorphan was found to be of a high affinity, saturable, reversible and sensitive to thermal degradation. These results suggest that certain dextrorotatory morphian derivatives may prove to be useful probes in further investigations of the molecular characteristics of the [3H]PCP binding site in brain membrane preparations.  相似文献   

4.
Specific binding sites for vasopressin (AVP) were located in subcellular particulate fractions of rat brain with tritiated vasopressin of high specific activity, 22.5 Ci/mmol. Rat brain tissue was dissected, placed in cold 0.32 M sucrose containing proteolytic inhibitors, homogenized and fractionated into a crude nuclear fraction (1K pellet), crude mitochondrial fractions (12K pellet), and plasma membranes and microsomes (100K pellet). Specific binding of vasopressin was found in the 12K and 100K pellets in the presence of a divalent metal ion with Ni greater than Co greater than Mg greater than Mn greater than no metal ion at pH 7.4 in 50 mM Tris-Maleate buffer. Maximum specific binding of 16 nM AVP was located in the 100K anterior cortex fraction which bound 350 fmoles/mg protein; striatum, midbrain/thalamus, cerebellum, and medulla oblongata and pons bound specifically about 200 fmoles/mg protein and frontal poles and parietal cortex about 100 fmoles/mg protein in the 100K pellet. In all of the brain regions studied, except hippocampus and septum, the 100K pellet bound specifically 2 to 4 times more 3H-AVP than the 12K pellet. In the hippocampus with 16 nM AVP, the 12K pellet bound specifically 150 fmoles/mg protein; the septum, 75 fmoles/mg protein. Little or no binding to the 100K pellet was present in these regions. Bound AVP could be dissociated rapidly from the membranes by the addition of EDTA. The 12K hippocampal pellet was further fractionated into myelin, mitochondria, and synaptosomes; purification was confirmed by marker enzyme assays.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Radioligand binding studies were performed in order to elucidate the mechanism of action of anxiolytic-neuroleptic homophthalazines. Rat striatal membrane preparations were found to bind 3H-EGIS 6775 [3H-GYKI-52 322, 3H-(1-(4-aminophenyl)-4-methyl-7,8-dimethoxy-5H-homophthalazine)] in a specific and displaceable manner. Several other brain regions tested were devoid of similar binding activity. Saturation analysis revealed that binding affinity was in the 10(-8)-10(-7) M range. Binding was enhanced by Mg2+ ions and, to a smaller extent by Ca2+ ions. The binding principle was sensitive to heat or trypsin treatment. This specific binding site appears, according to competition studies, different from the receptors whose presence in the rat striatum has been reported earlier.  相似文献   

6.
Characterization of superoxide-producing sites in isolated brain mitochondria   总被引:17,自引:0,他引:17  
Mitochondrial respiratory chain complexes I and III have been shown to produce superoxide but the exact contribution and localization of individual sites have remained unclear. We approached this question investigating the effects of oxygen, substrates, inhibitors, and of the NAD+/NADH redox couple on H2O2 and superoxide production of isolated mitochondria from rat and human brain. Although rat brain mitochondria in the presence of glutamate+malate alone do generate only small amounts of H2O2 (0.04 +/- 0.02 nmol H2O2/min/mg), a substantial production is observed after the addition of the complex I inhibitor rotenone (0.68 +/- 0.25 nmol H2O2/min/mg) or in the presence of the respiratory substrate succinate alone (0.80 +/- 0.27 nmol H2O2/min/mg). The maximal rate of H2O2 generation by respiratory chain complex III observed in the presence of antimycin A was considerably lower (0.14 +/- 0.07 nmol H2O2/min/mg). Similar observations were made for mitochondria isolated from human parahippocampal gyrus. This is an indication that most of the superoxide radicals are produced at complex I and that high rates of production of reactive oxygen species are features of respiratory chain-inhibited mitochondria and of reversed electron flow, respectively. We determined the redox potential of the superoxide production site at complex I to be equal to -295 mV. This and the sensitivity to inhibitors suggest that the site of superoxide generation at complex I is most likely the flavine mononucleotide moiety. Because short-term incubation of rat brain mitochondria with H2O2 induced increased H2O2 production at this site we propose that reactive oxygen species can activate a self-accelerating vicious cycle causing mitochondrial damage and neuronal cell death.  相似文献   

7.
The availability of tritium-labelled sufentanil ([3H]SUF) allowed for a further radioligand analysis of opiate binding sites in rat brain. A comparison of the binding characteristics of [3H]SUF and [3H]dihydromorphine ([3H]DHM) revealed a very similar potency in their mutual displacement by unlabelled analogues. Furthermore, a series of putative μ-opiate agonists displayed equal potencies in displacing either [3H]SUF and [3H]DHM, the only striking exception being the highly μ-selective opioid peptide morphiceptin which was 33 times less potent in inhibiting [3H]SUF as compared to [3H]DHM binding. Additional experiments revealed further pronounced differences in [3H]SUF and [3H]DHM binding characteristics: the total amount of binding sites for [3H]SUF was 4 times higher than that for [3H]DHM and the regional distribution within particular brain areas displayed considerable differences. Furthermore, the binding of [3H]SUF was differentially modulated by sodium and GTP as compared to [3H]DHM binding. These data suggest that in rat brain, [3H]SUF interacts both with μ-opiate sites recognizing [3H]DHM and another type of opiate site, which cannot be equated with any of the, as yet, described δ- or κ-binding sites, and rather, represents a subclass of μ-opiate receptor sites. These experiments, thus, support the notion of subclasses (isoreceptors) for different types of opiate receptors.  相似文献   

8.
With a view to finding potential GABA-mimetics, the effects of a number of structural analogues of GABA were studied on three parameters associated with GABA neural transmission of rat brain. These were (1) the binding of [3H]GABA to its receptor, (2) the binding of [3H]GABA to its transporter (sodium-dependent binding), and (3) the activity of GABA aminotransferase. Thirteen of the 21 compounds tested competitively inhibited both the low and the high affinity GABA receptor binding components. The most potent inhibitors were morpholinopropane sulphonic acid (MOPS) and aminoethylthiosulphonic acid (AETS). All of the compounds were markedly less effective in inhibiting the high affinity GABA receptor binding system than the low affinity system. The effect of each of the inhibitors was measured on [3H]diazepam receptor binding. Only 6-(morpholinomethyl)kojic acid, kojic amine, 1-piperidinepropane sulphonic acid and 4(4′-azido-benzoimidylamino)butanoic acid (ABBA) were able to induce a stimulation of binding. Four of the inhibitors of [3H]GABA binding were able to appreciably reduce GABA-induced enhancement of diazepam binding. These were N-(2-nitro,4-azidophenyl)aminopropane sulphonic acid, 8-amino-1-napthalene sulphonic acid, narcotine-N-oxide and 5-phenyl-2-pyrrolepropionic acid. These results demonstrate that MOPS and AETS are good inhibitors of GABA receptor binding although there is no other evidence that they might be agonists since they have no effect on diazepam receptor binding. Based on their ability to block GABA-induced stimulation of diazepam binding ABBA, 8-amino-1-naphthalene sulphonic acid and 5-phenyl-2-pyrrolepropionic acid may possess antagonistic properties. ABBA was the only compound to inhibit sodium-dependent [3H]GABA binding. None of the compounds had an effect on the activity of GABA aminotransferase. From this study at least two analogues, MOPS and AETS, have emerged that hold potential as GABA-mimetics. Also, the three GABA recognition sites of rat brain have been shown to possess marked pharmacological differences.  相似文献   

9.
Lectins belong to a class of proteins or glycoproteins able to bind carbohydrates. The study reported here describes the identification of lectin-binding sites in the adult rat brain. The results indicate that among the 31 lectins utilized, eight show a specific positive reaction with neurons. Staining was also observed with other cerebral structures such as myelin, leptomeninges, choroid plexus and capillaries. Lectins are, therefore, an important histochemical tool and can be easily and reliably used for the identification of cells and cerebral structures in the adult rat brain.Abbreviations Gal galactose - Fuc fucose - Man mannose - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - NeuNAc sialic acid  相似文献   

10.
Transection of the fimbria/fornix, producing a 75% reduction in the activity of the cholinergic marker choline-o-acetyltransferase (CAT EC. 2.3.1.6) in rat hippocampus, did not change the binding characteristics of the non-subtype selective, muscarinic cholinergic receptor antagonist ligand [3H](−)quinuclidinyl benzilate {[3H](−)QNB}. Pirenzepine competition for [3H](−)QNB binding in the hippocampus was best described by a computer derived model assuming two binding sites of high affinity (putative M1 receptors) and low affinity (putative M2 receptors). There was no change in the proportion of high and low affinity pirenzepine binding sites in the hippocampus following cholinergic deafferentation. Thus, these data provide no evidence for a discrete localization of either putative subtype of muscarinic receptor discriminated by pirenzepine restricted to the terminals of CAT containing neurons innervating the rat hippocampus.Chronic scopolamine treatment produced a 48% increase in the Bmax of [3H](−)QNB binding in the hippocampus, but again there was no change in the proportions of the sites discriminated by pirenzepine demonstrating that both putative subtypes were regulated identically. Similarly, carbachol competition for [3H](−)QNB was unaltered following cholinergic deafferentation or chronic scopolamine treatment. Furthermore, similar guanylyl-5′-imidodiphosphate [Gpp(NH)p] modulation of the proportions of high and low affinity carbachol binding sites was found in the hippocampus following transection of the fimbria/fornix or chronic scopolamine treatment. Thus there is no adaptation of receptor-effector coupling following these treatments that is reflected by changes in receptor recognition site characteristics.Carbachol competition for [3H]pirenzepine binding to putative M1 receptors in the hippocampus was biphasic and was also modulated by Gpp(NH)p. In the brainstem, there was a homogeneous population of putative M2 [3H](−)QNB binding sites having low affinity for pirenzepine. Carbachol competition for these binding sites was also biphasic and modulated by guanine nucleotides. Thus, both putative M1 and M2 muscarinic receptors, as defined by high or low affinity for pirenzepine respectively, may mediate their effects in rat brain via a guanine nucleotide regulatory subunit.  相似文献   

11.
12.
Characterization of sulphatide-containing lipoproteins in rat brain   总被引:1,自引:1,他引:1  
—(1) Water-soluble [35S]sulphatide is found in the 105,000 g supernatant (SN) of rat brain after intraperitoneal injection of Na235SO4. This labelled sulphatide has a density between those of free lipid and free protein. (2) Fractionation of SN by preparative acrylamide gel electrophoresis indicates that the [35S]sulphatide is not distributed among all SN proteins, but is associated with certain specific proteins. One of the isolated [35S]sulphatide-containing proteins appears homogeneous by analytical acrylamide gel electrophoresis at several pH values. (3) Comparison of the turnover of [35S]sulphatide in microsomes, SN, and myelin indicates that these three subcellular fractions behave as distinct metabolic pools, which meet the requirements for a precursor-product relationship between microsomes and SN and between SN and myelin. (4) These results suggest that sulphatide, synthesized in the microsomes, is transported to the myelin membrane as water-soluble sulphatide containing Iipoproteins in SN.  相似文献   

13.
Somatostatin binding sites were characterized in isolated rat adipocytes. The binding was found to be saturable, reversible, and time- and temperature-dependent. The somatostatin binding sites are principally located on the cell surface. 125I-[Tyr11]somatostatin binding was not inhibited by glucagon and angiotensin II. By contrast, native somatostatin and somatostatin-28 displaced labeled peptide with a similar ED50: 50 nM. Scatchard analysis pointed to the existence of two classes of binding sites, with a Kd of 7.64 nM for the high-affinity sites and a Kd of 295 nM for the low-affinity ones. Comparison of somatostatin receptor binding and its lipolytic action in isolated rat adipocytes suggested that the spare receptor phenomenon cannot be applied to the lipolytic action of somatostatin in rat adipose tissue.  相似文献   

14.
Rat intestinal mucin is polymerized by a putative 'link' component of Mr 118,000 that can be released from the native mucin by thiol reduction [Fahim, Forstner & Forstner (1983) Biochem. J. 209, 117-124]. To confirm that this component is an integral part of the mucin and independent of the mucin purification technique, rat mucin was purified in the present study by three independent techniques. In all cases, the 118,000-Mr component was released after reduction. The 118 kDa band was electroeluted from SDS/polyacrylamide gels and its composition shown to resemble closely that of the link component of human intestinal mucin [Mantle, Forstner & Forstner (1984) Biochem. J. 224, 345-354]. Carbohydrates were present, including significant (10 mol/100 mol) amounts of mannose, suggesting the presence of N-linked oligosaccharides. Monospecific antibodies prepared against the rat 118,000-Mr component established its tissue localization in intestinal goblet cells. Mucins subjected to SDS/polyacrylamide-gel electrophoresis and Western blots using the same antibody, established that the link components of rat and human intestinal mucin are similar antigenically. Brief exposure (10 min) of native rat mucin to trypsin or Pronase (enzyme/mucin protein, 1:500, w/w) also released a 118,000-Mr component that reacted with the monospecific antibody. Thus the 118,000-Mr component is an integral part of the mucin and, although linked to large glycopeptides by disulphide bonds, this component also has proteinase-sensitive peptide bonds, presumably at terminal locations such that brief treatment with proteinases releases the molecule in a reasonably intact form. Under physiological conditions, therefore, one might expect that, after mucin is secreted into the intestinal lumen, luminal proteinases would rapidly remove the link component, thereby causing the mucin to depolymerize.  相似文献   

15.
beta-Endorphin: characteristics of binding sites in the rat brain.   总被引:3,自引:0,他引:3  
Stereospecific binding of human β-endorphin to rat membrane preparations is described for the first time using [3H-Tyr27]-βh-endorphin as the ligand. The binding is time dependent and saturable with respect to βh-endorphin with an apparent dissociation constant of 0.3 nM. Sodium ion (100 mM) elevates this value to 2.5 nM but has no effect on the total number of binding sites present in the membrane preparation. The ability of certain β-endorphin analogs, opiate agonists as well as antagonists to inhibit the binding of βh-endorphin, is presented.  相似文献   

16.
An asymmetric distribution of GABA binding sites was found in the cerebral cortex, hippocampus, cerebellar hemispheres, striatum, and thalamus. Higher levels of [3H]GABA binding were observed in the left-side of most brain areas and in a greater percentage of adult rats, but the opposite asymmetry was found in the thalamus. A similar left-right difference in cerebral hemispheres was also found in five day-old rats, suggesting the genetic predetermination of asymmetry.  相似文献   

17.
High affinity [3H]imipramine binding, endogenous levels of serotonin and noradrenaline, and serotonin uptake were determined in brain regions of rats with selective destruction of serotonergic neurons by 5,7-dihydroxytryptamine (5,7-DHT), of adrenergic neurons by 6-hydroxydopamine (6-OHDA), and of rats treated with reserpine. Neonatal treatment with 5,7-DHT resulted in a significant decrease of both serotonin levels and density (Bmax) of high affinity [3H]imipramine binding sites in the hippocampus. In contrast, an elevation of serotonin levels and an increase in Bmax of [3H]imipramine binding were noted in the pons--medulla region. No changes were observed in the noradrenaline content in either of these regions. Intracerebral 6-OHDA lesion produced a drastic suppression of noradrenaline levels in cerebral cortex but failed to alter the binding affinity (KD) or density (Bmax) of [3H]imipramine recognition sites. A single injection of reserpine (2.5 mg/kg) resulted in marked depletion of both serotonin (by 57%) and noradrenaline (by 86%) content and serotonin uptake (by 87%) in the cerebral cortex but had no significant influence of the parameters of high affinity [3H]imipramine binding in this brain region. The results suggest that high affinity [3H]imipramine binding in the brain is directly related to the integrity of serotonergic neurons but not to the magnitude of the uptake or the endogenous levels of the transmitter, and is not affected by damage to noradrenergic neurons or by low levels of noradrenaline.  相似文献   

18.
19.
M A Carino  A Horita 《Life sciences》1987,41(24):2663-2667
Stereotaxic microinjection of thyrotropin releasing hormone (TRH) into 16 brain areas revealed that only three sites, the medial septum and the lateral and anterior hypothalami, were sensitive to a 1.0 ug dose in stimulating intestinal transit in anesthetized rats. The medial septum and anterior hypothalamus also responded to 0.1 ug, but not to 0.01 ug, of TRH. Because TRH and its receptors are distributed in these brain areas, the present results suggest a possible role for this peptide in the central regulation of gastrointestinal activity.  相似文献   

20.
In the present study, we describe the specificity and the autoradiographic distribution of insulin binding sites in the rat central nervous system (CNS) after in vitro incubation of brain sections with [125I]-14A insulin. Increasing concentrations of unlabeled insulin produced a dose-dependent inhibition of [125I]-insulin binding which represented 92 +/- 2% displacement with 3 X 10(-5) M, whatever the brain sections tested. Half-maximum inhibition with native insulin was obtained with 2.2 X 10(-9) M, with 10(-7) M proinsulin whereas glucagon had no effect. Under our experimental conditions, no degradation of [125I]-insulin was observed. Autoradiograms obtained by apposition of LKB 3H-Ultrofilm showed a widespread distribution of [125I]-insulin in rat CNS. However, quantitative analysis of the autoradiograms with 10(-10) M of labeled insulin, showed a high number of [125I]-insulin binding sites in the choroid plexus, olfactory areas, in both cerebral and cerebellar cortices, the amygdaloid complex and in the septum. In the hippocampal formation, the dorsal dentate gyrus and various subfields of CA1, CA2 and CA3 were labeled. Moreover, arcuate, dorso- and ventromedial nuclei of the hypothalamus contained high concentrations of [125I]-insulin whereas a low density was observed in the mesencephalon. The metabolic role of insulin in the CNS is supported by the large distribution of insulin binding sites in the rat brain. However, the presence of high affinity binding sites in selective areas involved in perception and integrative processes as well as in the regulation of both feeding behavior and neuroendocrine functions, suggests a neuromodulatory role of insulin in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号