首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Hong Kong streams are subject to aggressive water extractions but the downstream water needs of ecosystems – i.e. environmental flow (e‐flow) requirements – have not yet been addressed. This study investigated hydro‐ecological relationships that could be used to establish e‐flow allocations for streams in monsoonal Hong Kong. 2. Data were collected during the wet and dry seasons from 10 unpolluted streams experiencing a gradient of flow reductions (c. 0–98%). Relationships between flow conditions (percentage discharge reduction and absolute discharge volume) and responses of macroinvertebrate composition and periphyton condition were established for each season. 3. Declines in richness of Ephemeroptera and abundance of hydropsychid caddisflies, as well as increases in the proportion of predators, were linearly related to percentage discharge reduction during both seasons. Relationships were also recorded for eight other macroinvertebrate richness or compositional metrics during the dry season only. Relationships between macroinvertebrate assemblage attributes and absolute discharge volume across downstream reaches were also evident. Periphyton was relatively insensitive to flow reductions and did not provide useful hydro‐ecological relationships, although declines in autotrophic index were related to percentage discharge reduction during the dry season. 4. Using hydro‐ecological relationships established for macroinvertebrates, two levels of e‐flow were proposed: a ‘threshold’ intended to maintain near‐natural conditions and a ‘degradation limit’ that allowed no more than 25% of the maximum indicator response to flow reduction. Calculated threshold e‐flows required downstream allocation of ≥74% of natural flows; degradation limit e‐flows were ≥12% (wet) and ≥27% (dry). The discharge needed to maintain threshold conditions was 30–105 L s?1 (wet) and 5–14 L s?1 (dry), with degradation limit e‐flows of 19–57 L s?1 (wet) and 3–6 L s?1 (dry), relative to natural mean discharges of 77–303 L s?1 (wet) and 3–18 L s?1 (dry). 5. The proposed e‐flow allocations are indicative only, and significant obstacles to implementation have yet to be surmounted. Any such implementation requires monitoring of outcomes in order to refine the allocations and inform adaptive flow management for Hong Kong streams.  相似文献   

2.
  1. Streams draining forested landscapes are fuelled by terrestrial plant litter, which can be transported downstream or retained and broken down locally. However, fluxes of plant litter in streams can vary at multiple spatio-temporal scales, affecting the availability of this key resource in heterotrophic stream food webs.
  2. To explore this question we quantified several processes related to litter dynamics (i.e. litter inputs, storage, losses by transport and losses by breakdown) by sampling litter at multiple sites in three streams of the Brazilian Cerrado biome (which has a tropical wet–dry climate) for 2 years. We assessed the relative contribution of different spatial (among and within streams) and temporal scales (annual, seasonal and monthly) to total variability of these processes (hereafter fluxes).
  3. Spatial and temporal variability of fluxes were both high, but spatial variation was 1.67-fold greater than temporal variation (61 versus 37%, respectively), especially at the within-stream scale (50% overall); an exception was litterfall, which varied less spatially than temporally (24 versus 76%). Temporal variation of litter storage (and hence availability to consumers) was mostly seasonal and due to differences in net transport.
  4. Inputs and transport were higher in the wet than the dry season (wet versus dry season, 1.45 versus 0.92 and 1.43 versus 0.06 g litter m−2 day−1), while breakdown was similar between both seasons (0.88 versus 0.94 g litter m−2 day−1). Storage (i.e. accumulation) rate was positive and negative in the dry and wet season, respectively, indicating that litter was stored in the dry season and exported in the wet season. The transitional dry–wet season showed the highest inputs, breakdown and storage (3.21, 1.63 g litter m−2 day−1 and 145 g litter m−2), while the wet–dry season showed lower inputs (as in the dry season), higher transport (as in the wet season) and lower breakdown and storage than the other seasons (0.93, 0.65, 0.31 g litter m−2 day−1 and 24 g litter m−2).
  5. Our results underscore the role of variation in biophysical drivers of litter fluxes within streams (e.g. pool–riffle configuration, substrate features, biological communities), and suggest that high within-stream replication is necessary to study litter fluxes at larger scales and over time. The seasonal patterns suggested potential changes in litter dynamics under future climate scenarios in the tropics, including increased storage due to reduced transport in a drier climate.
  相似文献   

3.
1. Macrobrachium hainanense is a large predatory palaemonid shrimp, present at high densities in pools of low‐order forested streams in Hong Kong. The present study investigated the impacts of M. hainanense on benthic community structure and functions in pools of two streams: Tai Po Kau Forest Stream and Tai Shing Stream. 2. Repeated whole‐pool experiments involving shrimp density manipulations (removal, control and addition) were conducted in both streams between October 2000 and April 2002, and included a wet (May to September) and two dry (October to April) seasons. The three objectives of the study were to determine the effects of M. hainanense predation on benthic macroinvertebrate abundance and species richness, rates of leaf litter breakdown because of effects on detritivores, and periphyton standing stocks by way of an effect on herbivores. 3. Wet season results showed consistent reductions in benthos densities and species richness following heavy rainfall, irrespective of shrimp manipulation. These results suggested that spate‐induced disturbances might override biotic effects and play a dominant role in structuring benthic communities in stream pools in Hong Kong. 4. No significant, reproducible effects on any of the response variables measured in either stream were found during the dry season. Litter breakdown was reduced in the absence of shrimps during one experiment only, suggesting it might be a type I error. These results signified no effect of shrimp removal on benthic communities, or on the functional processes of litter breakdown, or on periphyton accumulation. The large scale of the experimental units (8–40 m2), refuge availability, and the presence of benthic predatory fishes that cropped excess prey made available by removal of M. hainanense, may have contributed to the lack of any effect, despite the abundance of the predatory shrimps.  相似文献   

4.
The high biodiversity of tropical forest streams depends on the strong input of organic matter, yet the leaf litter decomposition dynamics in these streams are not well understood. We assessed how seasonal litterfall affects leaf litter breakdown, density and biomass of aquatic invertebrates, and the microbial biomass and sporulation of aquatic hyphomycetes in a South American grassland ‘vereda’ landscape. Although litter production in the riparian area was low, leaf litter breakdown was high compared with other South American systems, with maximum values coinciding with the rainy season. Fungal biomass in decomposing leaves was high, but spore densities in water and sporulation rates were very low. Invertebrates were not abundant in litter bags, suggesting they play a minor role in leaf litter decomposition. Chironomids accounted for ~70 percent of all invertebrates; only 10 percent of non‐Chironomidae invertebrates were shredders. Therefore, fungi appear to be the drivers of leaf litter decomposition. Our results show that despite low productivity and relatively fast litter decomposition, organic matter accumulated in the stream and riparian area. This pattern was attributed to the wet/dry cycles in which leaves falling in the flat riparian zone remain undecomposed (during the dry period) and are massively transported to the riverbed (rainy season).  相似文献   

5.
We studied the effects of flow reduction on epibenthic algal assemblages by comparing up- and down-stream reaches of ten Hong Kong streams subject to different degrees of water abstraction during 2007–2008. Downstream discharge declined by 71 and 54% during the wet and dry seasons, respectively. Algal responses varied seasonally and according to morphological guild and reflecting reductions in discharge and current velocity, or changes in total nitrogen and phosphate, or their combined effects. Significant inter-reach assemblage differences were observed during the both seasons, but wet-season assemblage structure was not directly influenced by any flow-related variable. During the dry season, scouring-tolerant prostrate/adnate diatoms (especially Achnanthes, Cocconeis) were relatively abundant upstream, whereas intolerant stalked (Eunotia, Gomphonema) and mobile diatoms were more numerous downstream. Both low- and high-profile (erect diatoms, Chamaesiphon, Calothrix) guilds were sensitive to changes in nutrients. Low-flow conditions downstream, surprisingly, enhanced algal diversity, and richness. Based on the linear response of Cocconeis (mainly C. placentula) to discharge reduction, we recommend that >65% of dry-season discharge should be maintained in downstream reaches in order to sustain near-natural algal assemblages; 32% of discharge is required to avoid substantial alterations in assemblage structure.  相似文献   

6.
1. We quantified spatial and temporal variability in benthic macroinvertebrate species richness, diversity and abundance in six unpolluted streams in monsoonal Hong Kong at different scales using a nested sampling design. The spatial scales were regions, stream sites and stream sections within sites; temporal scales were years (1997–99), seasons (dry versus wet seasons) and days within seasons. 2. Spatiotemporal variability in total abundance and species richness was greater during the wet season, especially at small scales, and tended to obscure site‐ and region‐scale differences, which were more conspicuous during the dry season. Total abundance and richness were greater in the dry season, reflecting the effects of spate‐induced disturbance during the wet season. Species diversity showed little variation at the seasonal scale, but variability at the site scale was apparent during both seasons. 3. Despite marked variations in monsoonal rainfall, inter‐year differences in macroinvertebrate richness and abundance at the site scale during the wet season were minor. Inter‐year differences were only evident during the dry season when streams were at base flow and biotic interactions may structure assemblages. 4. Small‐scale patchiness within riffles was the dominant spatial scale of variation in macroinvertebrate richness, total abundance and densities of common species, although site or region was important for some species. The proportion of total variance contributed by small‐scale spatial variability increased during the dry season, whereas temporal variability associated with days was greater during the wet season. 5. The observed patterns of spatiotemporal variation have implications for detection of environmental change or biomonitoring using macroinvertebrate indicators in streams in monsoonal regions. Sampling should be confined to the dry season or, in cases where more resources are available, make use of data from both dry and wet seasons. Sampling in more than one dry season is required to avoid the potentially confounding effects of inter‐year variation, although variability at that scale was relatively small.  相似文献   

7.
8.
1. Analysis of the stable isotope signatures of carbon (C) and nitrogen (N) of foods and consumers has led to some preliminary understanding of the relative importance of autochthonous and allochthonous resources in tropical streams. However, robust generalizations about the dynamics of food webs in these habitats, and their response to shading gradients or season, are still lacking. In addition, the feasibility of employing a baseline δ15N value for estimating trophic positions (TPs) of consumers in small tropical streams has yet to be explored. 2. We analysed data on stable isotope signatures of food sources and aquatic consumers obtained from 14 studies carried out in small streams in monsoonal Hong Kong (22°30′N, 114°10′E) between 1996 and 2006. Emphasis was placed on determining the relative importance of leaf litter and autochthonous foods in supporting consumer biomass, and the extent to which trophic base and TP vary among streams and seasons. 3. Although allochthonous leaf litter was generally 13C‐ and 15N‐depleted relative to autochthonous foods, there were marked isotopic shifts of food sources and consumers in response to season (dry versus wet) and stream shading. Consumer taxa were generally more 13C‐ and 15N‐enriched in the unshaded streams, but seasonal effects were more variable. Despite these changes, there was consistent evidence that stream food webs were based on periphytic algae and/or cyanobacteria with leaf litter serving as a minor food. 4. Heptageniidae (Ephemeroptera), Tipulidae (Diptera), Elmidae (Coleoptera) and shrimps (Atyidae) were used as a baseline for calculating the TPs of other consumer taxa. The maximum TPs in shaded streams remained fairly constant between seasons (dry = 3.93; wet = 3.97), while those in unshaded streams were higher and showed seasonal fluctuations (dry = 5.13; wet = 4.39). 5. Although variations in consumer isotope signatures in response to season and shading gradients did not confound our interpretation of the stream food base, changes in consumer δ15N did affect the calculation of consumer TPs. Misleading estimates of consumer TPs are likely if samples are collected from a narrow range of streams and/or during one season. Overestimation of the TPs of specialist herbivores (e.g. fish grazers) is also possible when autochthonous resources are substantially more 15N‐enriched than allochthonous foods.  相似文献   

9.
1. Balitorid loaches are widespread and highly diverse in Asian streams, yet their life history and ecology have received little attention. We investigated seasonal (wet versus dry season) and spatial variation in populations of algivorous Pseudogastromyzon myersi in Hong Kong, and estimated the magnitude of secondary production by this fish in pools in four streams (two shaded and two unshaded) over a 15‐month period. 2. Mean population densities of P. myersi ranged from 6.0 to 23.2 individuals m−2, constituting more than half (and typically >70%) of benthic fishes censused. Abundance was c. 25% greater in the wet season, when recruitment occurred. Significant density differences among streams were not related to shading conditions and were evident despite small‐scale variations in P. myersi abundance among pools. Mean biomass varied among streams from 0.85 to 3.87 g ash‐free dry weight (AFDW) m−2. Spatial and seasonal patterns in biomass and density were similar, apart from some minor disparities attributable to differences in mean body size among populations. 3. All four P. myersi populations bred once a year in June and July, and life spans varied from 24 to 26 months. Populations consisted of three cohorts immediately after recruitment but, for most of the study period, only two cohorts were evident. Cohort‐specific growth rates did not differ significantly among streams but, in all streams, younger cohorts had higher cohort‐specific growth rates. 4. Secondary production of P. myersi estimated by the size‐frequency (SF) method was 2.7–11.5 g AFDW m−2 year−1 and almost twice that calculated by the increment‐summation (IS) method (1.2–6.6 g AFDW m−2 year−1). Annual P/B ratios were 1.17 – 2.16 year−1 (IS) and 2.73 – 3.22 year−1 (SF). Highest production was recorded in an unshaded stream and the lowest in a shaded stream, but site rankings by production did not otherwise match shading conditions. Wet‐season production was six times greater than dry‐season production, and daily production fell to almost zero during January and February. Cool temperatures (<17 °C) may have limited fish activity and influenced detectability during some dry‐season censuses. Estimates of abundance and annual production by P. myersi are therefore conservative. 5. Comparisons with the literature indicate that the abundance and production of P. myersi in Hong Kong was high relative to other benthic fishes in tropical Asia, or their temperate counterparts in small streams. Manipulative experiments are needed to determine the influence of P. myersi, and algivorous balitorids in general, on periphyton dynamics and energy flow in Asian streams.  相似文献   

10.
Future climates have the potential to alter decomposition rates in tropical forest with implications for carbon emissions, nutrient cycling and retention of standing litter. However, our ability to predict impacts, particularly for seasonally wet forests in the old world, is limited by a paucity of data, a limited understanding of the relative importance of different aspects of climate and the extent to which decomposition rates are constrained by factors other than climate (e.g. soil, vegetation composition). We used the litterbag method to determine leaf litter decay rates at 18 sites distributed throughout the Australian wet tropics bioregion over a 14‐month period. Specifically, we investigated regional controls on litter decay including climate, soil and litter chemical quality. We used both in situ litter collected from litterfall on site and a standardized control leaf litter substrate. The control litter removed the effect of litter chemical quality and the in situ study quantified decomposition specific to the site. Decomposition was generally slower than for other tropical rainforests globally except in our wet and nutrient‐richer sites. This is most likely attributable to the higher latitude, often highly seasonal rainfall and very poor soils in our system. Decomposition rates were best explained by a combination of climate, soil and litter quality. For in situ litter (native to the site) this included: average leaf wetness in the dry season (LWDS; i.e. moisture condensation) and the initial P content of the leaves, or LWDS and initial C. For control litter (no litter quality effect) this included: rainfall seasonality (% dry season days with 0‐mm rainfall), soil P and mean annual temperature. These results suggest that the impact of climate change on decomposition rates within Australian tropical rainforests will be critically dependent on the trajectory of dry season moisture inputs over the coming decades.  相似文献   

11.
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower‐quality litter, but these correlations were influenced by a single, N‐fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.  相似文献   

12.
13.
The main objective of this study was to evaluate dissolved organic and inorganic carbon dynamics along upstream and downstream reaches of the Acre River draining the city of Rio Branco, in the state of Acre, Brazil. Dissolved organic carbon (DOC) concentrations in the Acre River were significantly higher during the wet season, ranging from 385 ± 160 to 430 ± 131 ??M among the stations, with no difference in upstream and downstream concentrations. Dissolved inorganic carbon (DIC) showed an inverse pattern, with higher concentrations in the dry season, ranging from 816 ± 215 to 998 ± 754 ??M among the stations, as well as no difference in upstream and downstream DIC concentrations. Bicarbonate was the dominant DIC fraction and was mainly observed during the dry season. Due to lower pH values during the wet season, CO2 partial pressure (pCO2) in the Acre River was higher in the wet season, with values ranging from 4,567 ± 1,813 to 4,893 ± 837 ppm among the stations. Our results indicate that, although the Acre River drains a large city with significant sewage disposal into the river, seasonal hydrological processes are the main driver of dissolved carbon dynamics, even in the downstream study reach directly influenced by urbanization.  相似文献   

14.
Seasonal variation of the physicochemical conditions of streams plays an important role in aquatic insect diversity and community structure. Asian tropical streams profoundly change between seasons due to the effects of monsoons. However, little is known about how these changes affect aquatic insect diversity and community structure. The objectives of this study are to examine seasonal variations of the physicochemical conditions in tropical streams in Thailand and to assess the effects of these changes on black fly community structure and diversity. Black flies were sampled and physicochemical conditions recorded at eight sites between December 2007 and December 2008. A total of 10 black fly species were found. Comparisons of the streams between seasons revealed that physical conditions related to rainfall rate were significantly different. Canonical correspondence analysis differentiated sampling sites from each season. Streams in the rainy season were faster and deeper, with higher discharge and conductivity than those of the cold and dry seasons. Species richness was significantly higher in the rainy season than in the cold and dry seasons ( F  = 6.23, P  = 0.004). Community structure profoundly changed between the low-flow season (cold and dry) and high-flow season. Black fly species found predominantly in the low-flow season ( Simulium siamense "cytoform A", S. aureohirtum ) decreased dramatically during the high-flow season. In contrast, species found at high frequency during the high-flow season ( S. nakhonense , S. angulistylum ) disappeared in the low-flow season. The study demonstrates the importance of seasonal variation of stream conditions on black fly community structure and diversity.  相似文献   

15.
Langhans SD  Tockner K 《Oecologia》2006,147(3):501-509
Despite growing recognition of the importance of a natural flow regime in river-floodplain systems, researchers struggle to quantify ecosystem responses to altered hydrological regimes. How do frequency, timing, and duration of inundation affect fundamental ecosystem processes such as leaf litter decomposition? Along the semi-natural Tagliamento River corridor, located in northeastern Italy, we employed in situ experiments to separate effects of different inundation components on breakdown rates of black poplar (Populus nigra). We used a litter-bag method with two different mesh sizes to investigate how fungi and macroinvertebrates influence leaf breakdown rates. Ten treatments, each representing a specific combination of duration and frequency of inundation, were deployed in two seasons (summer, winter) to mimic complex inundation patterns. After 30 days of exposure, mean percentage of remaining leaf litter (ash free dry mass) ranged between 51% (permanent wet) and 88% (permanent dry). Leaf breakdown was significantly faster in winter than in summer. Duration of inundation was the main inundation component that controlled leaf breakdown rates. Leaf-shredding macroinvertebrates played only a role in the permanent wet treatment. Fungal parameters explained the faster leaf breakdown in winter. Our study suggests that modifications of the inundation regime will directly modify established decomposition processes. Factors reducing duration of inundation will decelerate leaf breakdown rates, whereas a decrease in flow variation will reduce leaf breakdown heterogeneity.  相似文献   

16.
1. We assessed the relative importance of different scales of spatial and temporal variability on benthic macroinvertebrate assemblage structure in six unpolluted streams in monsoonal Hong Kong using ordination and complementary multivariate analyses. The spatial scales were regions, sites (streams) and sections (riffles) within sites. The temporal scales were years (three, including one with unusually high rainfall), seasons (dry versus wet) and days within seasons. 2. Significant differences in assemblage structure were manifested at all temporal scales. Those at the site scale were most obvious, whereas demarcation of assemblage structure at the section (riffle) scale was smaller, and there was no significant regional differentiation in assemblage structure. Seasonal variability in assemblage structure was greater than that among years or days. 3. Inter‐year differences in assemblage structure were recorded at all sites, and were noted among all years at some sites but not at others. They were recorded more frequently during the dry season, although their occurrence (in pair‐wise comparisons between years) appeared to be related to differences in the monsoonal (wet season) rainfall. 4. Seasonal differences in assemblage structure were strongly evident at all sites. Inter‐site differences were more apparent during the dry season when local (site‐scale) influences on assemblages were stronger. By contrast, wet‐season samples were more variable because of spate‐induced disturbance, and inter‐site differentiation was less distinct. 5. Differences among days at all sites were relatively minor, but shifts attributable to repeated spate‐induced disturbance were evident at some sites during the wet season. 6. Differences at the section scale were recorded more frequently during the dry season, when the extent of within‐site variability among sections was higher, reflecting increased patchiness within sections resulting from increased substratum heterogeneity and/or greater intensity of biotic interactions. 7. Seasonal shifts in macroinvertebrate assemblage structure at a variety of scales in Hong Kong streams are likely to be attributable to monsoonal rains affecting the relative intensity of abiotic disturbance and biotic interactions in accordance with the harsh‐benign hypothesis.  相似文献   

17.
沿长江中下游(宜昌-铜陵段)13座城市共37个位点,分别于丰水期和枯水期对岸带的湿生植物进行调查,从物种和系统发育2个维度研究群落的构建机制,并结合环境和空间因子探讨其驱动因素。结果显示:(1)丰水期湿生植物群落的α多样性高于枯水期,且丰水期α多样性主要与水分条件呈正相关,而枯水期则主要与温度和土壤总氮含量有关。(2)丰水期的系统发育结构指数呈聚集趋势,暗示生境过滤起着主导作用,而枯水期的NRI(net relatedness index)和NTI(nearest taxon index)呈不同趋势,暗示存在近期的群落分化。(3)群落的α多样性在物种层面和系统发育层面存在显著关联性,其多样性水平可在一定程度上互为表征。(4)长江中下游沿岸湿生植物群落的构建机制在不同时期存在差异,丰水期的群落构建是环境筛选和扩散限制共同作用的结果,且以环境筛选作用占主导,而枯水期的群落构建仅在物种层面受一定程度环境筛选作用的影响。(5)大生境的温度变化、微生境的土壤水分和养分条件是影响长江中下游岸带湿生植物群落差异的主要驱动因素。该研究结果可为长江中下游岸带湿地生态系统的管理和保护提供科学支持。  相似文献   

18.
The damming of rivers and streams alters downstream habitat characteristics and biotic assemblages, and might thus alter stream functioning, although there is not much direct evidence of this impact. In this study we compared breakdown of alder leaves upstream and downstream from 4 small (<1 hm3) dams in 4 Mediterranean mountain streams with no appreciable impact on water temperature and nutrient concentrations. Despite no effect on water characteristics, dams decreased leaf litter breakdown rates. Abundance and biomass of invertebrates and shredders and hyphomycete sporulation rates did not differ between upstream and downstream bags. However, the structure of invertebrate and hyphomycete assemblages did. Especially evident was a drop in limnephilids, which might explain the slower breakdown of leaf litter below dams. These results may help to explain some of the variability found in the literature on the effects of dams on decomposition rates. If dams increase water temperature and nutrient concentrations they may promote faster decomposition, but if dams do not change water characteristics, their impact on detritivore communities may cause slower decomposition rates.  相似文献   

19.
1. Manipulative experiments were carried out in four Hong Kong streams (two shaded, two unshaded) to investigate the impact of grazing by an algivorous fish, Pseudogastromyzon myersi, on benthic algal biomass and assemblage composition. Experiments were conducted and repeated during both the dry and wet seasons to determine whether spate‐induced disturbance modified any grazing effect. Treatments comprised fish exclusion and inclusion via closed and open cages, with a no‐cage treatment used as a control for the cage effect. Treatments were maintained for 4 weeks in each experimental run. 2. Grazing by P. myersi reduced benthic algal biomass and the organic matter content of periphyton in open cages and the no‐cage treatment relative to closed cages. The similarity between open‐cage and no‐cage treatments was evidence that the overall difference among treatments was caused by limiting fish access to closed cages and not merely an artifact of caging. Grazing effects were broadly similar in all streams, but there was a significant statistical interaction between treatments and seasons. 3. Analysis of dry‐season data matched the overall trend in inter‐treatment differences, confirming the effects of grazing by P. myersi on algal biomass and periphyton organic matter. Significant differences in algal assemblage composition between closed‐cage and no‐cage treatments during the dry season reflected reductions in the abundance of erect, stalked diatoms (Gomphonema) and filamentous cyanobacteria (Homeothrix). Removal of these vulnerable overstorey algae by P. myersi resulted in greater abundance of understorey diatoms (Achnanthes and Cocconeis) in the no‐cage treatment in all streams during the dry season. The composition of algal assemblages in open cages was intermediate between the other two treatments. 4. Although fish densities were greater in all streams during the wet season, spate‐induced disturbance obscured grazing effects and there were no significant differences among treatments attributable to fish grazing. Seasonal variation in impacts of P. myersi grazing provides support for the harsh‐benign hypothesis, and confirms that biotic factors are less important controls of stream algal biomass and assemblage structure during periods (i.e. the wet season in Hong Kong) when abiotic disturbances are frequent or intense.  相似文献   

20.
为研究溶解氧(DO)、化学需氧量(CODMn)、氨氮(NH4+-N)、汞(Hg)、铅(Pb)、砷(As)和镉(Cd)在枯水期和丰水期变化对附生硅藻群落结构的影响, 分别于 2017 年 3 月和 6 月对柳江流域进行了调查分析, 旨在为深入研究柳江流域硅藻群落分布特征奠定基础, 以期为该流域水质的利用和管理提供理论依据。柳江流域共鉴定出附生硅藻 137 种, 隶属于 6 目 9 科 34 属。各采样点硅藻丰富度变化范围为 13-42 种, 呈现为丰水期高于枯水期。硅藻优势种组成在枯、丰水期分别有 5 种和 8 种, 具有明显的季节演替。聚类分析(Cluster analysis)显示, 硅藻群落结构在时空分布上存在差异, 枯水期可分为 3 个类群, 基本呈现在干流及支流段的上游、中游和下游; 丰水期可分为 2 个类群, 大致分布在流域的中下游和上游。其中, 在枯水期, Cyclotella fottii、Cyclotella. stelligera、Achnanthes minutissima 和 Cymbella laveis 在上游为优势种, A. minutissima 和 Nitzschia valdecostata 在中游丰度较高, 下游优势种为 Navicula cryptocephala、Amphora montana 和 A. minutissima 等; 在丰水期, 中下游优势种主要以 Nitzschia palea 为主, 上游优势种为 A. minutissima、A. montana 和 Achnanthes petersenii 等。主成分分析(Principle component analysis, PCA)和冗余分析(Redundancy analysis, RDA)显示, 枯水期水质因子对硅藻群落的影响为 Pb>Cd>Hg>As>CODMn>DO, 丰水期为 As>DO>CODMn>NH4+-N>Cd。结果表明, 水质因子 Cd、As、DO 和 CODMn 在枯水期和丰水期都对硅藻群落结构的变化起着重要作用, 但重金属因子在枯水期对硅藻影响较大, 而溶解氧在丰水期对硅藻影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号