首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Signals necessary for in vivo expression of Ti plasmid T-DNA-encoded octopine and nopaline synthase genes were studied in crown gall tumors by constructing mutated genes carrying various lengths of sequences upstream of the 5' initiation site of their mRNAs. Deletions upstream of position -294 did not interfere with expression of the octopine synthase gene while those extending upstream of position -170 greatly reduced the gene expression. The estimated size of the octopine synthase promoter is therefore 295 bp. The maximal length of 5' upstream sequences involved in the in vivo expression of the nopaline synthase gene is 261 bp. Our results also demonstrated that Ti plasmid-derived sequences contain all signals essential for expression of opine synthase genes in plants. Expression of these genes, therefore, is independent of the direct vicinity of the plant DNA sequences and is not activated by formation of plant DNA and T-DNA border junction.  相似文献   

3.
The mechanism of adaptation to Fe-deficiency stress was investigated in the unicellular green alga, Chlamydomonas reinhardtii. Upon removal of nutritional Fe, the activity of a cell surface Fe(III)-chelate reductase was increased by at least 15-fold within 24 h. This increase was negatively corelated with the Fe concentration in the growth media. Incubation of cells in the presence of the Fe2+-specific chelator, bathophenanthrolinedisulphonic acid, led to an increased Fe3+ reductase activity, even when sufficient Fe was present. Growth of cells in Cu-free media for 48 h led to no statistically significant increase in Fe3+ reductase activity. The Fe(III)-chelate reductase activity in Fe-starved cells was saturable with an apparent Km of 31 M and was inhibited by uncouplers of the transmembrane proton gradient but not by SH-specific reagents.Fe uptake was only observed in Fe-deficient cells. Uptake was specific for Fe in that at 100-fold excess of a number of metal ions in the transport assay did not inhibit uptake activity. However, a 100-fold excess of Cu resulted in a 87% inhibition of Fe uptake. The Vmax for Fe3+ reduction activity was 250-fold greater than for Fe uptake; although the Km values for both processes differed by only 10-fold. Thus, the rate limiting step in Fe assimilation was transport and not reduction. These results indicate that Fe assimilation in C. reinhardtii involves a reductive step and thus resembles the mechanism of Fe uptake in Strategy I higher plants.Keywords: Ferric chelate reduction, iron assimilation, iron uptake, unicellular green algae, Chlamydomonas.   相似文献   

4.
5.
6.
7.
Plant biotechnology is a dynamically developing science, which comprises many fields of knowledge. Novel plant genetic engineering findings highly influence the improvement of industrial production. These findings mostly concern cis-regulatory elements, which are sequences controlling gene expression at all developmental stages. They comprise of promoters, enhancers, insulators and silencers, which are used to construct synthetic expression cassettes. Examples of most important cis-regulatory elements are reviewed in the present paper. Variability among core promoters content and distal promoter regions impedes evaluation of interactions between them during the artificial promoters construction. Synthetic promoters and artificial expression cassettes trigger a significant increase in gene expression level, better properties and quality of a product. Accumulating knowledge about gene promoters, cis sequences and their cooperating factors allows uniform expression systems and highly predictable results.  相似文献   

8.
9.
10.
The role of N-glycans in the secretion of glycoproteins by suspension-cultured sycamore cells was studied. The transport of glycoproteins to the extracellular compartment was investigated in the presence of a glycan-processing inhibitor, castanospermine. Castanospermine has been selected because it inhibits homogeneously glycan maturation in sycamore cells and leads to the accumulation of a single immature N-glycan. The structure of this glycan has been identified as Glc3Man7GlcNAc2 by labeling experiments, affinity chromatography on concanavalin A-Sepharose and proton NMR. In contrast with previous results showing that N-glycosylation is a pre-requisite for secretion of N-linked glycoproteins, this secretion is not affected by the presence of castanospermine. As a consequence, the presence of this unprocessed glycan is sufficient for an efficient secretion of glycoproteins in the extracellular compartment of suspension-cultured sycamore cells.  相似文献   

11.
Root cultures from several species of the Solanaceae were initiated and subcultured on Murashige and Skoog medium without growth regulators. Direct shoot regeneration was observed in four different species. The effect of several concentrations of auxin (IAA) and cytokinins (BAP, zeatin) on the number of shoots generated by two highly responsive species (Nicotiana exigua, N. debneyi) is described.  相似文献   

12.
13.
Slk19p is necessary to prevent separation of sister chromatids in meiosis I   总被引:4,自引:0,他引:4  
BACKGROUND: A fundamental difference between meiotic and mitotic chromosome segregation is that in meiosis I, sister chromatids remain joined, moving as a unit to one pole of the spindle rather than separating as they do in mitosis. It has long been known that the sustained linkage of sister chromatids through meiotic anaphase I is accomplished by association of the chromatids at the centromere region. The localization of the cohesin Rec8p to the centromeres is essential for maintenance of sister chromatid cohesion through meiosis I, but the molecular basis for the regulation of Rec8p and sister kinetochores in meiosis remains a mystery. RESULTS: We show that the SLK19 gene product from Saccharomyces cerevisiae is essential for proper chromosome segregation during meiosis I. When slk19 mutants were induced to sporulate they completed events characteristic of meiotic prophase I, but at the first meiotic division they segregated their sister chromatids to opposite poles at high frequencies. The vast majority of these cells did not perform a second meiotic division and proceeded to form dyads (asci containing two spores). Slk19p was found to localize to centromere regions of chromosomes during meiotic prophase where it remained until anaphase I. In the absence of Slk19p, Rec8p was not maintained at the centromere region through anaphase I as it is in wild-type cells. Finally, we demonstrate that Slk19p appears to function downstream of the meiosis-specific protein Spo13p in control of sister chromatid behavior during meiosis I. CONCLUSIONS: Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.  相似文献   

14.
Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1) receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.  相似文献   

15.
Structure and expression of ubiquitin genes in higher plants   总被引:13,自引:0,他引:13  
cDNA clones encoding ubiquitin were isolated from a barley leaf cDNA library using a mammalian ubiquitin cDNA clone as probe. The nucleotide sequence of one of the clones codes for 2.2 perfect repeats of the 76-amino-acid-long ubiquitin protein with an extra lysine residue at the C-terminus. The barley ubiquitin amino acid sequence differs from the animal sequence at three positions and from the yeast sequence at two positions. The ubiquitin poly(precursor) are coded by a multigene family with 8-10 genes that produce four or five different size messengers between 700 and 2000 nucleotides in length. The large poly(A)-rich RNAs are constitutively expressed in vegetative tissues whereas the 700-nucleotide messenger(s) were only detected in tissues containing dividing cells.  相似文献   

16.
Use of viral replicons for the expression of genes in plants   总被引:3,自引:0,他引:3  
Autonomously replicating virus-based vectors have been investigated as a means of introducing heterologous genes into plants. This approach has a number of potential advantages over stable genetic transformation, particularly in terms of speed and levels of expression that can be obtained. Several groups of plant viruses, with genomes consisting of both DNA and RNA, have been investigated as possible gene vectors. In the case of DNA viruses, it has generally been possible to identify nonessential regions of the genome that can be replaced by foreign sequences. However, there appear to be limitations on the size of insert which can be tolerated. In the case of RNA viruses, replacement of viral sequences usually has a drastic effect on the viability. However, in several cases it has proved possible to substantially increase the size of the viral genome by the direct insertion of additional sequences while still retaining the ability of the viruses to multiply and spread in plants. These RNA virus-based systems appear to have the greatest potential as gene vectors.  相似文献   

17.
Shoot induction of ABA-requiring genes in response to soil drying   总被引:3,自引:0,他引:3  
Plant responses to water deficit are dynamic and varied, requiringco-ordination between the shoot and root. Among these responsesare alterations in gene expression. The expression of four genes,le4, le16, le20, and le25, which require increased ABA contentfor expression, was studied in tomato plants in which the rootsystems were divided between two large pots to impose waterdeficit gradually and to control signals from the root in responseto soil drying without inducing a signal from the shoot. Onegroup of plants had one-half of the roots watered, another grouphad both halves watered, and another group had neither halveswatered. In unwatered plants, the expression of le4 and le25correlated with ABA content, and that of le16 and le20 occurredbefore a detectable increase in leaf ABA content. The contrastingpatterns of expression indicate a difference in sensitivityof these genes to ABA or an additional signalling mechanism.Ample evidence indicates that shoot processes such as stomatalclosure are controlled by signals from the root. This studydemonstrates that genes may also be induced in the shoot bysignals from the root. Shoots of plants in which only half ofthe roots were watered showed no decrease in relative watercontent and no increase in ABA content; however, three of thefour genes, le4, le16, and le20, were induced. Root-to-shootcommunication plays a role in changes in gene expression andin alterations in physiological processes. Key words: Abscisic acid, water deficit, gene expression, split-root plants, long-distance signal  相似文献   

18.
AtSPO11-1 is necessary for efficient meiotic recombination in plants   总被引:21,自引:0,他引:21  
The Saccharomyces cerevisiae Spo11 protein catalyses DNA double-strand breaks (DSBs) that initiate meiotic recombination. The model plant Arabidopsis thaliana possesses at least three SPO11 homologues. T-DNA and ethyl-methane sulfonate mutagenesis allowed us to show that meiotic progression is altered in plants in which the AtSPO11-1 gene is disrupted. Both male and female meiocytes formed very few bivalents. Furthermore, no fully synapsed chromosomes were observed during prophase I. Later, in meiosis I, we observed that chromosomes segregated randomly, leading to the production of a large proportion of non-functional gametes. These meiotic aberrations were associated with a drastic reduction in meiotic recombination. Thus, our data show that initiation of meiotic recombination by SPO11- induced DSBs is a mechanism conserved in plants. Furthermore, unlike Drosophila and Caenorhabditis elegans, but like fungi, SPO11 is necessary for normal synapsis in plants.  相似文献   

19.
20.
The optimal growth schedule of a plant with two vegetative parts is studied to investigate the balance between shoot and root. An intuitive justification of optimization procedures used in Pontryagin's maximum principle is obtained by defining the marginal values of shoot size, root size, and reproductive activity at various times of the season and deriving their differential equations and terminal conditions. The optimal growth pattern which maximizes the total reproductive activity during the season is composed of the convergence of a plant's shape to a balanced growth path, followed by simultaneous growth of shoot and root (balanced growth), ending with the reproductive growth. Along the balanced growth path, a plant has a root/shoot ratio which maximizes the daily net photosynthesis for a given total biomass. The model also shows a simultaneous stop of shoot and root growth when the reproduction begins, the dependence of root/shoot ratio on age, water and light availability, etc., the convergence of a plant's shape to the balanced growth after pruning or an environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号