首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isomeric configuration of the 3,4-didehydroretinal chromophore of goldfish porphyropsin was determined by high performance liquid chromatography (HPLC) and by the regeneration of this visual pigment with authentic isomers of 3,4-didehydroretinal. A nonisomerizing, quantitative method using hydroxylamine and methylene chloride was employed to extract the 3,4-didehyroretinal chromophore from the rod outer segment membrane (containing the porphyropsin). When this extracted chromophore was injected into the HPLC, only a single major peak was observed and this peak coeluted with the authentic 11-cis 3,4-didehydroretinyl oxime. This suggests that the chromophore of goldfish porphyropsin is 11-cis 3,4-didehydroretinal. When the bleached rod outer segments (containing the opsin) were incubated with different 3,4-didehydroretinal isomers (13-cis, 11-cis, 9-cis, and all-trans), only the 11-cis isomer resulted in the degeneration of porphyropsin. This also suggests that the porphyropsin chromophore exists in the 11-cis configuration.  相似文献   

2.
The conversion of retinol to 3,4-didehydroretinol in bullfrog tadpoles was studied by injecting [3H] all-trans retinol into the peritoneal cavity. The specific activities of retinoids in the eye and the rest of the body at various time intervals after the injection were then determined by HPLC (high-performance liquid chromatography). Radioactivity was observed in ocular 3,4-didehydroretinyl esters after 2 days and their specific activity increased throughout the 2 weeks of experiment. This demonstrates that tadpoles can convert retinol to its 3,4-didehydro derivative. In vitro experiments performed on isolated eye cups also suggested that the ocular tissues could convert retinol to 3,4-didehydroretinol. In the eye, the specific activity of porphyropsin or all-trans 3,4-didehydroretinal (extracted by the denaturing solvent acetone) exceeded that of the all-trans 3,4-didehydroretinyl esters in storage. This suggests that the main ocular store of 3,4-didehydroretinyl esters does not constitute a precursor pool for porphyropsin synthesis.  相似文献   

3.
1. Retinal isomers extracted from the acid-hydrolysate of cetyltrimethylammonium bromide-treated dark-adapted bacteriorhodopsin (bRD) were analyzed in a high performance liquid chromatograph (HPLC) system. The extract from bRD contains almost equal molar amounts of both 13-cis retinal and all-trans retinal isomers. The extent of isomerization and the yield of both isomers during the isolation process were investigated by the application of the same extraction procedure to artificial bacteriorhodopsin reconstituted with 13-cis retinal isomer (13-cis bacteriorhodopsin) and also to light-adapted bacteriorhodopsin (bRL) which has been shown to contain only the all-trans isomer (all-trans bacteriorhodopsin). 2. A reconstituted bacteriorhodopsin, which had been prepared from apo-bacteriorhodopsin and an equimolar mixture of both 13-cis retinal and all-trans retinal isomers, showed an absorption spectrum having the same maximum wavelength as that of bRD even at the beginning of the reconstitution process. 3. Analysis of the photosteady states of bRD at -190 degrees C revealed that it was composed of two different species, one having 13-cis retinal and the other having all-trans retinal isomers in approximately equal molar amounts. These two also gave their respective photoproducts. 4. From these results it can be concluded that bRD contains both 13-cis retinal and all-trans retinal isomers in nearly equal molar amounts as its chromophore.  相似文献   

4.
5.
Summary Melanophores from tadpoles of Xenopus laevis (Daudin) were isolated by digestion of tail fins with acetyltrypsin and collagenase and maintained in primary culture for 6 weeks up to 3 months. Within 36 to 72 h the melanophores develop one to eight dendritic processes per cell; secondary and tertiary branchings of the processes were frequently observed. The melanophores in primary culture disperse under the influence of -MSH or cyclic AMP; upon rinsing out these substances the cells aggregate. In darkness, about 40 % of the cells disperse their pigment, whereas under illumination the pigment of the melanophores aggregates. To date, attempts to initiate cell division in melanophores have not been successful.  相似文献   

6.
The 9-cis, 11-cis, 13-cis, and all-trans isomers of 10-fluoro-, 10-chloro-, 10-methyl-, and 10-ethylretinals have been prepared and characterized. Results of their interaction with bovine opsin are reported. The data have been analyzed in terms of the conformational properties of the retinal isomers and their steric compatibility with the binding site as defined by the two-dimensional map disclosed earlier. The need to expand the active zone and previously undetected restrictions in the third dimension are noted.  相似文献   

7.
Utilization of retinoids in the bullfrog retina   总被引:4,自引:0,他引:4       下载免费PDF全文
The capacity to generate 11-cis retinal from retinoids arising naturally in the eye was examined in the retina of the bullfrog, Rana catesbeiana. Retinoids, co-suspended with phosphatidylcholine, were applied topically to the photoreceptor surface of the isolated retina after substantial bleaching of the native visual pigment. The increase in photoreceptor sensitivity associated with the formation of rhodopsin, used as an assay for the appearance of 11-cis retinal in the receptors, was analyzed by extracellular measurement of the photoreceptor potential; in separate experiments using the isolated retina or receptor outer segment preparations, the formation of rhodopsin was measured spectrophotometrically. Treatments with the 11- cis isomers of retinal and retinol induced significant increases in both the rhodopsin content and photic sensitivity of previously bleached receptors. The all-trans isomers of retinyl palmitate, retinol, and retinal, as well as the 11-cis isomer of retinyl palmitate, were inactive by both the electrophysiological and spectrophotometric criteria for the generation of rhodopsin. Treatment with any one of the "inactive" retinoids did not abolish the capacity of subsequently applied 11-cis retinal or 11-cis retinol to promote the formation of rhodopsin. The data are discussed in relation to the interconversions of retinoids ("visual cycle of vitamin A") thought to mediate the regeneration of rhodopsin in vivo after extensive bleaching.  相似文献   

8.
Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of all-trans and 9-cis retinal to the respective retinoic acids (RAs), whereas another member of the aldehyde dehydrogenase (ALDH) family, the phenobarbital-induced aldehyde dehydrogenase (PB-ALDH), is very poorly active. We have previously generated chimeras between these 2 enzymes that displayed selectivity for retinal isomers in crude bacterial extracts. Here we have characterized the kinetic properties of the corresponding purified recombinant proteins. The all-trans selective chimera RALDH-131 converted all-trans retinal to all-trans RA with 2.9-fold lower efficiency than the wild-type RALDH1 and had only residual activity with 9-cis retinal. The converse chimera PB-131 was specific for 9-cis retinal, with no residual activity for all-trans retinal. MgCl2 inhibited the activities of RALDH1 and PB-131, but not of RALDH-131, suggesting that amino acids 132-510 in RALDH are necessary for inhibition by MgCl2. These data demonstrate that the chimeric enzymes act as retinal isomer-selective ALDHs, and suggest that these enzymes may be useful to study the roles of cis RA isomers in embryogenesis and differentiation in vivo.  相似文献   

9.
Retinoids in the eggs of the solitary ascidian, Halocynthia roretzi, were analyzed by high performance liquid chromatography. Retinal was the almost exclusive retinoid (>99%), and the concentration of retinal was 25.9-40.1 (30.6 on average) ng/mg of protein. The egg retinal consisted of four isomers: all-trans (50.9%), 9-cis (6.8%), 11-cis (20.4%) and 13-cis (21.9%). The presence of retinal in the eggs of this ascidian is a characteristic shared with the wide range of oviparous vertebrates, although the isomer composition differs between ascidian eggs and vertebrate eggs; in vertebrate eggs, almost all the retinal is in the all-trans form. The egg retinal was bound to a protein complex via a Schiff base linkage. The electrophoretic characteristics of the protein complex were similar to that of egg yolk proteins of oviparous vertebrates. The results presented in this study strongly suggest that, as is found with oviparous vertebrates, retinal in the ascidian eggs is the essential mode of retinoid storage, and is the precursor of photoreceptive pigment chromophores and retinoic acid during development.  相似文献   

10.
Halobacterium halobium contains at least three retinal-containing pigments: bacteriorhodopsin, halorhodopsin, and a third rhodopsin-like pigment (tR) absorbing at approximately 590 nm, tR590. Illumination of tR590 gives rise to a very long-lived blue absorbing photoproduct, tR370. Using high-performance liquid chromatography we show that the chromophore of tR590 is primarily all-trans retinal and its conversion by light to tR370 causes the chromophore to isomerize primarily to the 13-cis conformation. Irradiation of the tR370 gives rise to a transient photoproduct absorbing at approximately 520 nm that decays back to the initial pigment tR590. In addition to all-trans retinal, the apomembrane of tR can also combine with 13-cis retinal but not with the 9- or 11-cis isomers.  相似文献   

11.
Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of all-trans and 9-cis retinal to the respective retinoic acids (RAs), whereas another member of the aldehyde dehydrogenase family, the phenobarbital-induced aldehyde dehydrogenase (PB-ALDH), is very poorly active. We have previously generated chimeras between these two enzymes that displayed selectivity for retinal isomers in crude bacterial extracts. To examine whether the selectivity of the recombinant enzymes is retained in intact cells, we first assessed whether retinoid-isomerizing activity is present in cultured eukaryotic cells. Our results demonstrate that the only RA isomers detected in RALDH1-expressing or non-expressing cells corresponded to the same steric conformation as the supplied retinoids, indicating a lack of measurable 9-cis/all-trans retinoid-isomerizing activity. Finally, HeLa cells transfected with RALDH1 derivatives that were retinal isomer-selective in vitro produced only the corresponding RA isomers, establishing these enzymes as useful tools to assess the respective roles of the two RA isomers in vivo.  相似文献   

12.
A comparative study on the chromophore (retinal) binding sites of the opsin (R-photopsin) from chicken red-sensitive cone visual pigment (iodopsin) and that scotopsin) from bovine rod pigment (rhodopsin) was made by the aid of geometric isomers of retinal (all-trans, 13-cis, 11-cis, 9-cis, and 7-cis) and retinal analogues including fluorinated (14-F, 12-F, 10-F, and 8-F) and methylated (12-methyl) 11-cis-retinals. The stereoselectivity of R-photopsin for the retinal isomers and analogues was almost identical with that of scotopsin, indicating that the shapes of the chromophore binding sites of both opsins are similar, although the former appears to be somewhat more restricted than the latter. The rates of pigment formation from R-photopsin were considerably greater than those from scotopsin. In addition, all the iodopsin isomers and analogues were more susceptible to hydroxylamine than were the rhodopsin ones. These observations suggest that the retinal binding site of iodopsin is located near the protein surface. On the basis of the spectral properties of fluorinated analogues, a polar group in the chromophore binding site of iodopsin as well as rhodopsin was estimated to be located near the hydrogen atom at the C10 position of the retinylidene chromophore. A large difference in wavelength between the absorption maxima of iodopsin and rhodopsin was significantly reduced in the 9-cis and 7-cis pigments. On the assumption that the retinylidene chromophore is anchored rigidly at the alpha-carbon of the lysine residue and loosely at the cyclohexenyl ring, each of the two isomers would have the Schiff-base nitrogen at a position altered from that of the 11-cis pigments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Laser desorption ionization (LDI)- and matrix-assisted laser desorption ionization (MALDI)-mass spectrometry (LDI-MS, MALDI-MS) at 337-nm laser wavelength were used to analyze retinol (vitamin A), retinoic acid, and retinal and their analogs 3-hydroxyretinol, 3-hydroxyretinoic acid, 3-hydroxyretinal, 4-oxoretinol, 4-oxoretinoic acid, 4-oxoretinal, 3,4-didehydroretinol (vitamin A(2)), 3,4-didehydroretinoic acid, 3,4-didehydroretinal, acycloretinol, acycloretinoic acid, and acycloretinal. The compounds exhibit sufficient ionizability which allows to obtain mass spectra by LDI which are similar in quality to those obtained by MALDI. Mass spectra were recorded with a linear time-of-flight (TOF) instrument or a reflectron-type (RETOF) instrument in positive-ion mode. Under the conditions of LDI-MS the compounds form abundant radical molecular ions (M+*), whereas in the MALDI mass spectra abundant protonated molecular ions ([M + H]+) are observed. Characteristic fragment ions provide additional structural information. High-performance liquid chromatography (HPLC) coupled with UV/Vis photodiode detection was used to assist in retinoid characterization. Synthesis of 3-hydroxyretinal, 4-oxoretinal, and acycloretinal was performed by oxidative cleavage of the all-trans-carotenoids of zeaxanthin, canthaxanthin, and lycopene.  相似文献   

14.
The fluorescence quantum yield of vitamin A2   总被引:1,自引:0,他引:1  
The fluorescence quantum yield of all-trans 3,4-didehydroretinol (vitamin A2) was measured in hexane at room temperature, using quinine sulfate as a standard. Unlike all-trans retinol (vitamin A1) which possessed a relative quantum yield of 0.0298, 3,4-didehydroretinol was 37 times lower in fluorescence (i.e. 0.0008). In addition, a significant bathochromic shift (both excitation and emission maxima) and a general broadening of the fluorescence spectra were noted for 3,4-didehydroretinol. This information is important not only for the understanding of the basic structure of vitamin A but also the photochemistry of vision.  相似文献   

15.
The effects of the 9-cis and 13-cis isomers of zeaxanthin on the molecular organization and dynamics of dimyristoylphosphatidylcholine (DMPC) membranes were investigated using conventional and saturation recovery EPR observations of the 1-palmitoyl-2-(14-doxylstearoyl)phosphatidylcholine (14-PC) spin label. The results were compared with the effects caused by the all-trans isomer of zeaxanthin. Effects on membrane fluidity, order, hydrophobicity, and the oxygen transport parameter were monitored at the center of the fluid phase DMPC membrane. The local diffusion-solubility product of oxygen molecules (oxygen transport parameter) in the membrane center, studied by saturation-recovery EPR, decreased by 47% and 27% by including 10 mol% 13-cis and 9-cis zeaxanthin, respectively; whereas, incorporation of all-trans zeaxanthin decreased this parameter by only 11%. At a zeaxanthin-to-DMPC mole ratio of 1:9, all investigated isomers decreased the membrane fluidity and increased the alkyl chain order in the membrane center. They also increased the hydrophobicity of the membrane interior. The effects of these isomers of zeaxanthin on the membrane properties mentioned above increase as: all-trans<9-cis相似文献   

16.
Regeneration of 11-cis retinal from all-trans retinol in the retinal pigment epithelium (RPE) is a critical step in the visual cycle. The enzyme(s) involved in this isomerization process has not been identified and both all-trans retinol and all-trans retinyl esters have been proposed as the substrate. This study is to determine the substrate of the isomerase enzyme or enzymatic complex. Incubation of bovine RPE microsomes with all-trans [(3)H]-retinol generated both retinyl esters and 11-cis retinol. Inhibition of lecithin retinol acyltransferase (LRAT) with 10-N-acetamidodecyl chloromethyl ketone (AcDCMK) or cellular retinol-binding protein I (CRBP) diminished the generation of both retinyl esters and 11-cis retinol from all-trans retinol. The 11-cis retinol production correlated with the retinyl ester levels, but not with the all-trans retinol levels in the reaction mixture. When retinyl esters were allowed to form prior to the addition of the LRAT inhibitors, a significant amount of isomerization product was generated. Incubation of all-trans [(3)H]-retinyl palmitate with RPE microsomes generated 11-cis retinol without any detectable production of all-trans retinol. The RPE65 knockout (Rpe65(-/-)) mouse eyecup lacks the isomerase activity, but LRAT activity remains the same as that in the wild-type (WT) mice. Retinyl esters in WT mice plateau at 8 weeks-of-age, but Rpe65(-/-) mice continue to accumulate retinyl esters with age (e.g., at 36 weeks, the levels are 20x that of WT). Our data indicate that the retinyl esters are the substrate of the isomerization reaction.  相似文献   

17.
The compound eye of the honeybee has previously been shown to contain a soluble retinal photoisomerase which, in vitro, is able to catalyze stereospecifically the photoconversion of all-trans retinal to 11-cis retinal. In this study we combine in vivo and in vitro techniques to demonstrate how the retinal photoisomerase is involved in the visual cycle, creating 11-cis retinal for the generation of visual pigment. Honeybees have approximately 2.5 pmol/eye of retinal associated with visual pigments, but larger amounts (4-12 pmol/eye) of both retinal and retinol bound to soluble proteins. When bees are dark adapted for 24 h or longer, greater than 80% of the endogenous retinal, mostly in the all-trans configuration, is associated with the retinal photoisomerase. On exposure to blue light the retinal is isomerized to 11-cis, which makes it available to an alcohol dehydrogenase. Most of it is then reduced to 11-cis retinol. The retinol is not esterified and remains associated with a soluble protein, serving as a reservoir of 11-cis retinoid available for renewal of visual pigment. Alternatively, 11-cis retinal can be transferred directly to opsin to regenerate rhodopsin, as shown by synthesis of rhodopsin in bleached frog rod outer segments. This retinaldehyde cycle from the honeybee is the third to be described. It appears very similar to the system in another group of arthropods, flies, and differs from the isomerization processes in vertebrates and cephalopod mollusks.  相似文献   

18.
Lutein (,-carotene-3,3-diol) is the major carotenoid of the light-harvesting systems of higher plants. Lutein was isolated at 4°C and in complete darkness from the bulk light-harvesting complex of Photosystem II of spinach (LHC IIb) and from BBY particles. Separation using normal-phase HPLC (with 2D detection) in comparison to the authentic isomers (prepared by iodine-sensitised isomerization) showed the presence of a number of geometrical isomers of this xanthophyll in PS II, namely all-trans (the major component); 13-cis, 13-cis and 15-cis-lutein. Iodine-sensitised photo-isomerization of all-trans lutein produced six geometrical isomers of lutein as determined by HPLC. The configuration of five of these isomers was determined by 1H-NMR to be all-trans, 9-cis, 9-cis, 13-cis and 13-cis. In addition, small amounts of another isomer have been tentatively identified to be 15-cis lutein on the basis of its electronic absorption spectrum. The possible functional significance of the presence of cis-isomers of this carotenoid in LHC IIb is discussed.  相似文献   

19.
The rate of regeneration of rhodopsin, from 11-cis-retinal and opsin, and bacteriorhodopsin from all-trans-retinal and bacterio-opsin, in the presence or absence of compounds whose structures partially resemble retinal were measured. Some of these compounds severely slowed down the regeneration process, but did not influence the extent of regeneration. In the case of compounds with a carbonyl functional group they were not joined to the active site of the apo-protein via a Schiff's base linkage since after treatment with NaBH4 an active apo-protein remained. The most effective inhibitors of rhodopsin regeneration were molecules whose structure could be superimposed on 9-cis or 11-cis retinal up to carbon atom 11. These C13 and C15 molecules were not distinguished between aldehyde, ketone or alcohol functional groups. The regeneration of bacteriorhodopsin was not inhibited by retinal analogues with short side chains. The most effective inhibitors were the all-trans C17-aldehyde (beta-ionylideneacetaldehyde) or C18-ketone (beta-ionylidenepent-3-ene-2-one) which, compared to retinal, lack two or three carbon atoms from the end of the poylene chain. The inhibition was very dependent upon the presence of the all-trans isomer and required aldehyde or ketone as functional group nitriles and alcohols were less effective. However, similarly to retinol, the all-trans C17 and C18 alcohols underwent a bathochromic shift and showed fine-structured spectra when mixed with bacterio-opsin.  相似文献   

20.
Composition of retinal isomers in three proton pumps (bacteriorhodopsin, archaerhodopsin-1, and archaerhodopsin-2) was determined by high performance liquid chromatography in their light-adapted and dark-adapted states. In the light-adapted state, more than 95% of the retinal in all three proton pumps were in the all-trans configuration. In the dark-adapted state, there were only two retinal isomers, all-trans and 13-cis, in the ratio of all-trans: 13-cis = 1:2 for bacteriorhodopsin, 1:1 for archaerhodopsin-1, and 3:1 for archaerhodopsin-2. The difference in the final isomer ratios in the dark-adapted bacteriorhodopsin and archaerhodopsin-2 was ascribed to the methionine-145 in bacteriorhodopsin. This is the only amino acid in the retinal pocket that is substituted by phenylalanine in archaerhodopsin-2. The bacteriorhodopsin point-mutated at this position to phenylalanine dramatically altered the final isomer ratio from 1:2 to 3:1 in the dark-adapted state. This point mutation also caused a 10 nm blue-shift of the adsorption spectrum, which is similar to the shift of archaerhodopsin-2 relative to the spectra of bacteriorhodopsin and archaerhodopsin-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号