共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The tail of the Xenopus tadpole will regenerate completely after transection. Much of the mass of the regenerate is composed of skeletal muscle, but there has been some uncertainty about the source of the new myofibres. Here, we show that the growing tail contains many muscle satellite cells. They are active in DNA replication, whereas the myonuclei are not. As in mammals, the satellite cells express pax7. We show that a domain-swapped construct, pax7EnR, can antagonize pax7 function. Transgenic tadpoles were prepared containing pax7EnR driven by a heat-inducible promoter. When induced, this reduces the proportion of satellite cells formed in the regenerate. A second amputation of the resulting tails yielded second regenerates containing notochord and spinal cord but little or no muscle. This shows that inhibition of pax7 action does not prevent differentiation of satellite cells to myofibres, but it does prevent their maintenance as a stem cell population. 相似文献
4.
We have investigated the requirement for the FGF and Wnt/beta-catenin pathways for Xenopus tadpole tail regeneration. Pathways were modified either by treatment with small molecules or by induction of transgene expression with heat shocks. Regeneration is inhibited by treatment with the FGF inhibitor SU5402, or by activation of a dominant negative FGF receptor, or by activation of expression of the Wnt inhibitor Dkk1. Agents promoting Wnt activity: the small molecule BIO, or a constitutively active form of beta-catenin, led to an increased growth rate. Combination of a Wnt activator with FGF inhibitor suppressed regeneration, while combination of a Wnt inhibitor with a FGF activator allowed regeneration. This suggests that the Wnt activity lies upstream of the FGF activity.Expression of both Wnt and FGF components was inhibited by activation of noggin, suggesting that BMP signalling lies upstream of both Wnt and FGF.The results show that the molecular mechanism of Xenopus tadpole tail regeneration is surprisingly similar to that of the Xenopus limb bud and the zebrafish caudal fin, despite the difference of anatomy. 相似文献
5.
Dr. Amos G. Gona 《Cell and tissue research》1969,95(4):483-494
Summary Tail fin pieces (discs) of Rana pipiens tadpoles were treated with thyroxine (T4) solution (50 g/liter) and the induced changes were studied with the light and electron microscopes. Definitive effects first appeared after 4 days of treatment. Thereafter various resorptive processes proceeded at an accelerating pace. By the 9th or 10th day the discs were reduced to tiny spherules.The most conspicuous changes were those of the breakdown and disposal of the basement lamella. First there was a loosening of the collagen layers followed by massive infiltration by macrophages which engulfed the collagen fibrils. By the 8th day the phagocytosis of the basement lamella was completed for the most part and the macrophages were clumped into masses.After 6 days of T4 treatment the epidermis was transformed from a 2- or 3-cell layered epithelium to a multilayered one. This was due to the detachment of the basal epithelial cells from the basement lamella followed by their movement towards the surface. Later, the epidermal cells showed atrophy by extensive autolytic processes.Discs incubated in the control medium (devoid of T4) remained intact for the duration of the experiment. Their morphology was essentially the same as that described by others from studies in vivo.This study was supported by Grants NIH T1-GM-102, NSF GB-5913, NIH NB-00840 and NIH NB-07566, and an Institutional Grant from the New Jersey College of Medicine and Dentistry.I am indebted to Drs. J. Osinchak and W. Etkin for their encouragement. 相似文献
6.
7.
Nick R Love Yaoyao Chen Boyan Bonev Michael J Gilchrist Lynne Fairclough Robert Lea Timothy J Mohun Roberto Paredes Leo AH Zeef Enrique Amaya 《BMC developmental biology》2011,11(1):1-15
Background
During liver development, intrahepatic bile ducts are thought to arise by a unique asymmetric mode of cholangiocyte tubulogenesis characterized by a series of remodeling stages. Moreover, in liver diseases, cells lining the Canals of Hering can proliferate and generate new hepatic tissue. The aim of this study was to develop protocols for three-dimensional visualization of protein expression, hepatic portal structures and human hepatic cholangiocyte tubulogenesis.Results
Protocols were developed to digitally visualize portal vessel branching and protein expression of hepatic cell lineage and extracellular matrix deposition markers in three dimensions. Samples from human prenatal livers ranging from 7 weeks + 2 days to 15½ weeks post conception as well as adult normal and acetaminophen intoxicated liver were used. The markers included cytokeratins (CK) 7 and 19, the epithelial cell adhesion molecule (EpCAM), hepatocyte paraffin 1 (HepPar1), sex determining region Y (SRY)-box 9 (SOX9), laminin, nestin, and aquaporin 1 (AQP1). Digital three-dimensional reconstructions using CK19 as a single marker protein disclosed a fine network of CK19 positive cells in the biliary tree in normal liver and in the extensive ductular reactions originating from intrahepatic bile ducts and branching into the parenchyma of the acetaminophen intoxicated liver. In the developing human liver, three-dimensional reconstructions using multiple marker proteins confirmed that the human intrahepatic biliary tree forms through several developmental stages involving an initial transition of primitive hepatocytes into cholangiocytes shaping the ductal plate followed by a process of maturation and remodeling where the intrahepatic biliary tree develops through an asymmetrical form of cholangiocyte tubulogenesis.Conclusions
The developed protocols provide a novel and sophisticated three-dimensional visualization of vessels and protein expression in human liver during development and disease. 相似文献8.
9.
K A Rubina P V Gulak E A Smirnova S M Starodubov G E Onishchenko 《Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society》1999,12(5):295-310
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immunostained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase. 相似文献
10.
Becerra J. Montes G. S. Bexiga S. R. R. Junqueira L. C. U. 《Cell and tissue research》1983,228(1):127-138
The influence of adrenalectomy and administration of hypertonic saline on the amount of vasopressin, oxytocin, and neurophysin contained in the median eminence and the neural lobe of rats was studied by means of the following methods: (i) morphometric and microphotometric analyses of aldehyde fuchsin-stained histological sections of the neurohypophysis; (ii) immunohistochemical demonstration of vasopressin, oxytocin, and neurophysin in the neurohypophysis, and (iii) radioimmunological measurement of vasopressin and oxytocin in extracts of the median eminence and the neural lobe. Adrenalectomy increases the amount of vasopressin and neurophysin in the external layer of the median eminence but does not change the content of oxytocin. It has no influence on the amount of vasopressin, oxytocin, and neurophysin demonstrable in the inner layer of the median eminence and in the neural lobe two weeks after the operation. Hypertonic saline markedly diminishes the vasopressin, oxytocin, and neurophysin content of the inner layer of the median eminence and the neural lobe but reduces only slightly, if at all, the amount of vasopressin and neurophysin in the outer layer of the median eminence. The findings support the concept that osmotic stress reduces only the vasopressin and oxytocin content of the hypothalamus-neural lobe system and has no or only little influence on the vasopressin content of the outer layer of the median eminence. 相似文献
11.
12.
The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of ∼1 μm. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of ∼4 μm and pair lifetime ∼5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm. 相似文献
13.
Proliferation in vitro of melanophores from Xenopus laevis 总被引:1,自引:0,他引:1
Melanophores of wild-type and periodic albino mutants of Xenopus laevis were successfully cultured in vitro. They proliferated in the presence of alpha-melanocyte-stimulating hormone (alpha-MSH or cyclic adenosine monophosphate (cAMP) at a doubling time of 8-10 days. These proliferating melanophores retained their phenotypes, ability to synthesize melanin, and melanin-dispersing response to MSH stimulation. Neither depigmentation nor selective cell death of periodic albino melanophores was observed for at least 4 months during the cultivation. 相似文献
14.
15.
Background
With the goal of learning to induce regeneration in human beings as a treatment for tissue loss, research is being conducted into the molecular and physiological details of the regeneration process. The tail of Xenopus laevis tadpoles has recently emerged as an important model for these studies; we explored the role of the spinal cord during tadpole tail regeneration.Methods and Results
Using ultrafast lasers to ablate cells, and Geometric Morphometrics to quantitatively analyze regenerate morphology, we explored the influence of different cell populations. For at least twenty-four hours after amputation (hpa), laser-induced damage to the dorsal midline affected the morphology of the regenerated tail; damage induced 48 hpa or later did not. Targeting different positions along the anterior-posterior (AP) axis caused different shape changes in the regenerate. Interestingly, damaging two positions affected regenerate morphology in a qualitatively different way than did damaging either position alone. Quantitative comparison of regenerate shapes provided strong evidence against a gradient and for the existence of position-specific morphogenetic information along the entire AP axis.Conclusions
We infer that there is a conduit of morphology-influencing information that requires a continuous dorsal midline, particularly an undamaged spinal cord. Contrary to expectation, this information is not in a gradient and it is not localized to the regeneration bud. We present a model of morphogenetic information flow from tissue undamaged by amputation and conclude that studies of information coming from far outside the amputation plane and regeneration bud will be critical for understanding regeneration and for translating fundamental understanding into biomedical approaches. 相似文献16.
A T Tsin R A Alvarez S L Fong C D Bridges 《Comparative biochemistry and physiology. B, Comparative biochemistry》1985,81(2):415-421
The conversion of retinol to 3,4-didehydroretinol in bullfrog tadpoles was studied by injecting [3H] all-trans retinol into the peritoneal cavity. The specific activities of retinoids in the eye and the rest of the body at various time intervals after the injection were then determined by HPLC (high-performance liquid chromatography). Radioactivity was observed in ocular 3,4-didehydroretinyl esters after 2 days and their specific activity increased throughout the 2 weeks of experiment. This demonstrates that tadpoles can convert retinol to its 3,4-didehydro derivative. In vitro experiments performed on isolated eye cups also suggested that the ocular tissues could convert retinol to 3,4-didehydroretinol. In the eye, the specific activity of porphyropsin or all-trans 3,4-didehydroretinal (extracted by the denaturing solvent acetone) exceeded that of the all-trans 3,4-didehydroretinyl esters in storage. This suggests that the main ocular store of 3,4-didehydroretinyl esters does not constitute a precursor pool for porphyropsin synthesis. 相似文献
17.
18.
Gross SP Tuma MC Deacon SW Serpinskaya AS Reilein AR Gelfand VI 《The Journal of cell biology》2002,156(5):855-865
Many cellular components are transported using a combination of the actin- and microtubule-based transport systems. However, how these two systems work together to allow well-regulated transport is not clearly understood. We investigate this question in the Xenopus melanophore model system, where three motors, kinesin II, cytoplasmic dynein, and myosin V, drive aggregation or dispersion of pigment organelles called melanosomes. During dispersion, myosin V functions as a "molecular ratchet" to increase outward transport by selectively terminating dynein-driven minus end runs. We show that there is a continual tug-of-war between the actin and microtubule transport systems, but the microtubule motors kinesin II and dynein are likely coordinated. Finally, we find that the transition from dispersion to aggregation increases dynein-mediated motion, decreases myosin V--mediated motion, and does not change kinesin II--dependent motion. Down-regulation of myosin V contributes to aggregation by impairing its ability to effectively compete with movement along microtubules. 相似文献
19.
Conclusions The foregoing results show that the presence of the notochord at the cut-surface is necessary for the regeneration of a new tail of the tadpole. In the absence of the notochord, the nerve-chord, if present at the cut end, is insufficient for the regeneration of a new tail. And in the absence of both notochord and nerve-cord at the cut-surface a new tail is not formed. In those cases in which the notochord is not present at first at the cut-surface (Fig. XI), it may regenerate and extend through the cut-region, and after reaching in this way the level of the cross-cut surface a new tail may then regenerate (Fig. XI).
Zusammenfassung Die vorstehend geschilderten Ergebnisse zeigen, dass die Gegenwart des Notochords an der Schnittfläche nöthig ist, wenn sich bei der Kaulquappe ein neuer Schwanz regeneriren soll. Beim Fehlen des Notochords ist der am Schnittende vorhandene Nervenstrang für die Regeneration eines neuen Schwanzes nicht ausreichend. Fehlen beide, so bildet sich an der Schnittfläche kein neuer Schwanz. In denjenigen Fällen, in denen zunächst kein Notochord an der Schnittfläche vorhanden ist (Fig. XI), kann es sich regeneriren und durch die Schnittregion ausdehnen. Nachdem es auf diesem Wege das Niveau der Querschnittsfläche erreicht hat, kann sich dann noch ein neuer Schwanz regeneriren (Fig. XI).相似文献
20.
In recent years much progress has been made in the understanding of the genes and mechanisms involved in specification of the cells of the endoderm, which give rise to the epithelium of the gut and respiratory system. However, little is known about the way in which the gut becomes patterned along its anterior-posterior axis, that is, how boundaries are established between the different epithelia of the gut tube. Here we show that the expression patterns of five genes divide the Xenopus tadpole gut epithelium into at least four regions along this axis in the undifferentiated, 3-day-old gut (stage 41), and that these divisions are maintained until at least 7 days, when cell differentiation is well under way. In addition, the restricted expression patterns of these genes clearly mark the anterior and posterior boundaries of the intestine. Xsox2 is expressed in the anterior gut, spanning the oesophagus and stomach but terminating at the stomach/intestine boundary. Xcad1 and Xcad2, two caudal-type homeobox genes, are expressed in a region with an anterior limit at this boundary and a posterior limit between the colon and proctodeum, therefore covering the whole of the small and large intestines. Intestinal fatty acid binding protein (IFABP) is expressed only in the anterior small intestine, and the even-skipped homeobox gene Xhox3 is expressed in the most posterior part of the gut, the proctodeum. 相似文献