首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To achieve tumor cell-restricted activation of CD95, we developed a CD95L fusion protein format, in which CD95L activity is only unmasked upon antibody-mediated binding to tumor cells and subsequent processing by tumor-associated proteases, such as matrix metalloproteases (MMPs) and urokinase plasminogen activator (uPA). On target-negative, but MMP- and uPA-expressing HT1080 tumor cells, the CD95L prodrugs were virtually inactive. On target antigen-expressing HT1080 cells, however, the CD95L prodrugs showed an apoptotic activity comparable to soluble CD95L artificially activated by crosslinking. CD95 activation by the CD95L prodrugs was preceded by prodrug processing. Apoptosis was blocked by inhibitors of MMPs or uPA and by neutralizing antibodies recognizing the targeted cell surface antigen or the CD95L moiety of the prodrugs. In a xenotransplantation tumor model, local application of the prodrug reduced the growth of target antigen-expressing, but not antigen-negative tumor cells, verifying targeted CD95L prodrug activation in vivo.  相似文献   

2.
Tumor necrosis factor (TNF) prodrugs are fusion proteins comprised of an N-terminal single-chain antibody variable fragment (scFv) targeting a TNF effector and a C-terminal TNF receptor (TNFR)1-derived inhibitor module. Introduction of matrix metalloproteinase (MMP)-2 recognition motifs between TNF and the TNFR1 fragment allowed activation by recombinant MMP-2 and MMP-expressing HT1080 cells. Processing by endogeneous MMPs required specific membrane binding of the TNF prodrug via the targeting scFv, ensuring strictly antigen-dependent activation. Interestingly, TNF bioactivity of the processed prodrug was approximately 1000-fold higher upon scFv-mediated targeting, and signaled juxtatropic cell death also to antigen-negative cells. Microscopical analyses of TNFR2 clustering and TNF receptor-associated factor 2 recruitment at contact sites to adjacent cells revealed the formation of stable TNFR complexes by target-bound, processed prodrug, resembling the increased signal capacity of natural, membrane-expressed TNF. MMP-2-sensitive TNF prodrugs represent novel cytokine-based reagents for targeted cancer therapy, which should be exploitable for MMP-overexpressing tumors.  相似文献   

3.
Four novel water-soluble peptide-paclitaxel conjugates were designed and synthesized as prostate-specific antigen (PSA)-activated prodrugs for prostate cancer therapy. These prodrugs were composed of a peptide, HSSKLQ or SSKYQ, each of which is selectively cleavable by PSA; a self-immolative linker, either para-aminobenzyl alcohol (PABS) or ethylene diamine (EDA); and the parent drug, paclitaxel. Introduction of a PABA or EDA linker between the peptide and paclitaxel in prodrugs 2-5 resulted in products with an increased rate of hydrolysis by PSA. The stability of prodrugs 2 and 3, with the PABA linker, was poor in the serum-containing medium because of the weak carbonate bond between the PABA and paclitaxel; however, this disadvantage was overcome by introducing a carbamate bond using an EDA linker in prodrugs 4 and 5. Thus, the incorporation of an EDA linker increased both the stability and PSA-mediated activation of these prodrugs. The cytotoxicity of each prodrug, as compared to paclitaxel, was determined against a variety of cell lines, including the PSA-secreting CWR22Rv1 prostate cancer cell line. The EDA-derived prodrug of paclitaxel 5 was stable and capable of being efficiently converted to an active drug that killed cells specifically in the presence of PSA, suggesting that this prodrug and similarly designed PSA-cleavable prodrugs may have potential as prostate cancer-specific therapeutic agents.  相似文献   

4.
Among the broad array of genes that have been evaluated for tumor therapy, those encoding prodrug activation enzymes are especially appealing as they directly complement ongoing clinical chemotherapeutic regimes. These enzymes can activate prodrugs that have low inherent toxicity using both bacterial and yeast enzymes, or enhance prodrug activation by mammalian enzymes. The general advantage of the former is the large therapeutic index that can be achieved, and of the latter, the non-immunogenicity (supporting longer periods of prodrug activation) and the fact that the prodrugs will continue to have some efficacy after transgene expression is extinguished. This review article describes 13 different prodrug activation schemes developed over the last 15 years, two of which - activation of ganciclovir by viral thymidine kinase and activation of 5-fluorocytosine to 5-fluorouracil - are currently being evaluated in clinical trials. Essentially all of these prodrug activation enzymes mediate toxicity through disruption of DNA replication, which occurs at differentially high rates in tumor cells compared with most normal cells. In cancer gene therapy, vectors target delivery of therapeutic genes to tumor cells, in contrast to the use of antibodies in antibody-directed prodrug therapy. Vector targeting is usually effected by direct injection into the tumor mass or surrounding tissues, but the efficiency of gene delivery is usually low. Thus it is important that the activated drug is able to act on non-transduced tumor cells. This bystander effect may require cell-to-cell contact or be mediated by facilitated diffusion or extracellular activation to target neighboring tumor cells. Effects at distant sites are believed to be mediated by the immune system, which can be mobilized to recognize tumor antigens by prodrug-activated gene therapy. Prodrug activation schemes can be combined with each other and with other treatments, such as radiation, in a synergistic manner. Use of prodrug wafers for intratumoral drug activation and selective permeabilization of the tumor vasculature to prodrugs and vectors should further increase the value of this new therapeutic modality.  相似文献   

5.
Paclitaxel conjugates of 7-phenylacetamidocephalosporanic acid were prepared as prodrugs for site specific activation by targeted beta-lactamase. Immunologically specific activation of the prodrug 5 containing 3,3-dimethyl-4-amino-butyric acid as linker in combination with the fusion protein L-49-sFv-beta-lactamase was demonstrated in vitro on 3677 melanoma cells.  相似文献   

6.
We have recently validated a macromolecular prodrug strategy for improved cancer chemotherapy based on two features: (a) rapid and selective binding of thiol-reactive prodrugs to the cysteine-34 position of endogenous albumin and (b) acid-sensitive promoted or enzymatic release of the drug at the tumor site [Kratz, F., Warnecke, A., Scheuemann, K., Stockmar, C., Schwab, J., Lazar, P., Druckes, P., Esser, N., Drevs, J., Rognan, D., Bissantz, C., Hinderling, C., Folkers, G., Fichtner, I., and Unger, C. (2002) J. Med. Chem. 45, 5523-33]. In the present work, we developed water-soluble camptothecin (CPT) and doxorubicin (DOXO) prodrugs that incorporate the peptide linker Ala-Leu-Ala-Leu that serves as a substrate for the tumor-associated protease, cathepsin B, which is overexpressed in several solid tumors. Consequently, two albumin-binding prodrugs were synthesized [EMC-Arg-Arg-Ala-Leu-Ala-Leu-Ala-CPT (1) and EMC-Arg-Arg-Ala-Leu-Ala-Leu-DOXO (2) (EMC = 6-maleimidocaproic acid)]. Both prodrugs exhibited excellent water-solubility and bound rapidly and selectively to the cysteine-34 position of endogenous albumin. Further in vitro studies showed that the albumin-bound form of the prodrugs was cleaved specifically by cathepsin B as well as in human tumor homogenates. Major cleavage products were CPT-peptide derivatives and CPT for the CPT prodrug and H-Leu-Ala-Leu-DOXO, H-Leu-DOXO, and DOXO for the doxorubicin prodrug. In vivo, 1 was superior to free camptothecin in an HT-29 human colon xenograft model; the antitumor efficacy of prodrug 2 was comparable to that of free doxorubicin in the M-3366 mamma carcinoma xenograft model at equimolar doses.  相似文献   

7.
In an earlier study using Caco-2 cells, an in vitro cell culture model of the intestinal mucosa, we have shown that the acyloxyalkoxy-based cyclic prodrugs 3 and 4 of the opioid peptides [Leu5]-enkephalin(1, H-Tyr-GLY-Gly-Phe-Leu-OH) and DADLE(2, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH), respectively, were substrates for apically polarized efflux systems and therefore less able to permeate the cell monolayers than were the opioid peptides themselves. In an attempt to explain how structure may influence the recognition of these cyclic prodrugs as substrates by the apically polarized efflux systems, we have determined the possible solution conformations of 3 and 4 using spectroscopic techniques (2D-NMR, CD) and molecular dynamics simulations. Spectroscopic as well as computational studies indicate that cyclic prodrug 4 exhibits a major and a minor conformer in a ratio of 3:2 where both conformers exhibit gamma and beta-turn structures. Spectroscopic, as well as molecular dynamics, studies indicate that the difference between the two conformers involves a cis/trans inversion occurring at the amide bond between the promoiety and Tyr1. The major conformer has a trans amide bond between the promoiety and Tyr1, whereas the minor conformer has a cis amide bond. The spectroscopic data indicate that cyclic prodrug 3 has a structure similar to that of the major conformer in cyclic prodrug 4. It has recently been reported that a particular arrangement of polar groups and spatial separation distances is required for substrate recognition by P-glycoprotein. When the conformation of the acyloxyalkoxy linker was investigated in the major and minor conformers of cyclic prodrug 4, with respect to distances between the polar functional groups, this ideal fixed spatial orientation was observed. Interestingly this same spatial orientation of polar functional groups was not observed for other cyclic prodrugs prepared by our laboratory using different chemical linkers (coumarinic acid and phenylpropionic acid) but the same opioid peptides that had previously been shown not to be substrates for the apically polarized efflux systems. Therefore, we hypothesize that the structure and/or the flexibility of the acyloxyalkoxy linker itself allows cyclic prodrugs 3 and 4 to adopt conformations that permit ideal arrangement of polar groups in the linker and their fixed spatial orientation. This possibly induces the substrate activity of cyclic prodrugs 3 and 4 for the apically polarized efflux systems.  相似文献   

8.
A strategy for the selective in vivo activation of prodrugs by proteases is presented. The approach is based on the design of polythiol peptides able to neutralize the toxicity of As(III) through chelation, and contemporarily to be recognized as substrates of a disease-linked specific protease. Enzyme digestion implies conversion of such polythiol peptides into monothiol fragments with irreversible loss of the ability to chelate the metalloid, thus triggering the release in its free and pharmacologically effective form. The proteases whose activity appears dramatically up-regulated in various pathologies, ranging from cancer to infectious diseases, can be conveniently employed as prodrug activators in the disease microenvironment. The design of the representative peptide shown here has been assisted by molecular modeling in order to fulfill the dual characteristic to be an efficient As(III) chelator and simultaneously a substrate of the matrix metalloproteinase-9 (MMP-9) whose activity results dramatically increased at the surface of cells affected by several pathologies.  相似文献   

9.
Bioactivation of carbamate-based 20(S)-camptothecin prodrugs   总被引:2,自引:0,他引:2  
Two new prodrugs of CPT were synthesized, based on carbamate linkages between the 20-hydroxy group of CPT and a linker designed to be enzymatically removed by either Penicillin-G-Amidase or catalytic antibody 38C2. Cell growth inhibition assays showed an up-to-2250-fold difference in toxicity between the prodrugs and the active drug. A significant increase in toxicity was observed upon incubation of the enzyme or the catalytic antibody with the corresponding prodrug. The described derivatives of CPT further our knowledge in the design of prodrugs for use in selective approaches for targeted chemotherapy.  相似文献   

10.
Gene therapy is defined as a technology that aims to modify the genetic component of cells to gain therapeutic benefits. Suicide gene therapy (or gene-directed enzyme prodrug therapy [GDEPT]) is a two-step treatment for cancer (especially, solid tumors). In the first step, a gene for a foreign enzyme is delivered to the tumor by a vector. Following the expression of the foreign enzyme, a prodrug is administered during the second step, which is selectively activated in the tumor. This article discusses the principles and the theoretical background of GDEPT. A special emphasis is put on enzyme/prodrug systems developed for GDEPT, the design of prodrugs and the kinetic of their activation, the types and the mechanisms of bystander effect and its immunological implications. The possible strategies to improve GDEPT are also discussed.  相似文献   

11.
Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. The toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.  相似文献   

12.
Designing truly tumor-specific prodrugs remains a challenge in the field of cancer chemotherapy. As a new strategy, we incubated homogenates of a spectrum of human colon tumor xenografts with a fluorogenic positional scanning tetrapeptide library in order to identify peptide sequences that are preferentially cleaved by colon tumors. Our screening experiments at pH 7.4 revealed that Met, Leu, and Lys were preferred amino acids in the position P(1) and Tyr, Phe, and Met in P(2), whereas in P(3) and P(4), the cleavage profiles were less characteristic. However, similar results were obtained when testing breast tumor material and homogenates from healthy murine organs. On the basis of these results, we developed albumin-binding camptothecin (CPT) prodrugs of the general formula EMC-Arg-P(4)-P(3)-P(2)-P(1)-Ala-CPT (EMC = 6-maleimidocaproic acid) that incorporated two peptide linkers: H-Arg-Ala-Phe-Met-OH and H-Arg-Phe-Tyr-Met-OH (P(4)-P(3)-P(2)-P(1)). The incorporation of two arginine residues rendered the prodrugs water-soluble (>7 mg/mL), while the use of alanine as an amino acid spacer proved to be beneficial for the release of the active agent. Incubation studies with homogenates of HT-29 colon tumor tissue and murine spleen, liver, and kidneys demonstrated cleavage of the peptide linker with CPT-peptide derivatives and CPT being the major cleavage products. Although the peptide sequence is not selectively cleaved in colon tumors, an in vivo study in a HT-29 xenograft model showed that the prodrug EMC-Arg-Arg-Ala-Phe-Met-Ala-CPT demonstrated enhanced antitumor efficacy when compared to CPT [( T/ C max: 17% for the prodrug (2 x 12.5 mg/kg CPT equivalents) and 40% for CPT (3 x 12.5 mg/kg)].  相似文献   

13.
The objective of this work was to synthesize the cyclic prodrugs 1 and 2 of [Leu5]-enkephalin (Tyr-Gly-Gly-Phe-Leu-OH) and DADLE (Tyr-D-Ala-Gly-Phe-D-Leu-OH), respectively, using an (acyloxy)alkoxy linker. The cyclic prodrugs 1 and 2 were synthesized via a convergent method using the (acyloxy)alkoxy promoiety that connected the C- and N-terminus of the peptides. The key intermediates were compounds 6a and 9a for cyclic prodrug 1 and compounds 6b and 9b for cyclic prodrug 2. The key intermediates 6a and 9a (or 6b and 9b) were coupled to give compound 10a (or 10b). The N- and C-terminus protecting groups were removed from 10a and 10b to give compounds 11a and 11b, respectively, which were then treated with HBTU to give 1 and 2 in 40% and 53% yields, respectively. The cyclic prodrugs 1 and 2 exhibited Stokes-Einstein molecular radii similar to those of [Leu5]-enkephalin and DADLE; however, the cyclic prodrugs were shown to be significantly more lipophilic than the corresponding opioid peptides, as determined by partitioning experiments using immobilized artificial membrane (IAM) column chromatography. In addition, the cyclic prodrugs exhibit stable solution conformations, which reduce their hydrogen bonding potentials. Based on these physicochemical characteristics, the cyclic prodrugs 1 and 2 should have exhibited better transcellular flux across the Caco-2 cell monolayer than [Leu5]-enkephalin and DADLE, respectively. However, the cyclic prodrugs 1 and 2 were shown in separate studies to be substrates for P-glycoprotein, which significantly reduced their ability to permeate across Caco-2 cell monolayers. When P-glycoprotein was inhibited, the permeability characteristics of prodrugs 1 and 2 were consistent with their physicochemical properties.  相似文献   

14.
DNA microarray analysis comparing human tumor tissues with normal tissues including hematopoietic progenitor cells resulted in identification of membrane dipeptidase as a prodrug activation enzyme. Novel prodrugs of 2'-deoxy-2'-methylidenecytidine (DMDC) including compound 23 that are activated by membrane dipeptidase (MDP) preferentially in tumor tissue were designed and synthesized to generate the active drug, DMDC, after hydrolysis of the dipeptide bond followed by spontaneous cyclization of the promoiety.  相似文献   

15.
16.
17.
A novel linker system based on 3-aminoxypropionate was designed and evaluated for drug release using proteolysis as an activation trigger followed by intramolecular cyclization. The hydroxylamine moiety present in the linker system enabled faster release of the parent drug from the linker–drug conjugate at lower pH as compared to an aliphatic amine moiety. Introduction of two methyl groups strategically at the α position to the carboxylate in the linker further improved the rate of cyclization by nearly 2-fold. The 3-aminoxypropionate linker was successfully applied to a model prodrug for protease activation using α-chymotrypsin as the activating enzyme; the activation of the model prodrug bearing the 3-aminoxypropionate linker was 136 times faster than the corresponding model prodrug bearing an amine linker.  相似文献   

18.
细胞色素P450(CYP)能催化各种内源性及外源性化合物的代谢,与多种肿瘤发生有关。其中CYP1A1参与多种前致癌物和致突变物的代谢活化,CYP1B1被认为在许多人癌细胞中特异性表达,参与药物的氧化代谢和前药的活化。CYP1A1和181已成为靶向抗肿瘤前药研究的新靶点。相继有大量相关研究报道,本文就近年来文献报道的CYP1A1和1B1靶向抗肿瘤前药研究进展。  相似文献   

19.
Five novel prodrug types of the potent and selective histamine H3-receptor agonist (R)-alpha-methylhistamine (1) were prepared and pharmacologically tested in vitro as well as in vivo. In particular, an amide of fatty acid, mono- and dicarbamates, an (acyloxy)alkylcarbamate, and a diphthalidyl derivative were synthesized, all of which require initial prodrug activation through an enzyme-catalyzed reaction in contrast to formerly developed azomethine prodrugs which are cleaved by chemical hydrolysis only. Further drug liberation may ensue spontaneously in a cascade to give 1. Since they have diverse stabilities the prodrugs were investigated for drug liberation in vitro under neutral, acidic, and basic conditions at different temperatures as well as with liver homogenates. In vivo investigation of prodrugs after oral administration to mice proved that the fatty amide 2, the Nalpha-methylcarbamate 4a, and the Nalpha-(1-(acetyloxy)ethylcarbamate) 5 showed moderate to high plasma levels of 1. Compound 5 displayed even more than 2.5 times the AUC for 1 than that of the reference azomethine prodrug BP2.94 in the periphery and also displayed a detectable drug level in the central nervous system. It was shown that prodrug approaches based on an initial enzyme-catalyzed liberation step are successfully applicable to different pro-moieties for improved bioavailability and prolonged half-live. These approaches may also be used for other aminergic compounds of this class to optimize pharmacokinetic behavior.  相似文献   

20.
In an attempt to improve the membrane permeabilities of opioid peptides, we have synthesized cyclic prodrugs of [Leu5]-enkephalin and DADLE using a coumarinic acid or a phenylpropionic acid linker. The synthesis of the coumarinic acid- and phenylpropionic acid-based cyclic prodrugs followed similar strategies. Key intermediates were the compounds with the C-terminal amino acids of opioid peptides (L-Leu, [Leu5]-enkephalin; D-Leu, DADLE) attached to the phenol hydroxyl group and the remaining amino acids of the peptide linked via the N-terminal amino acid (L-Tyr) attached to the carboxylic acid groups of the prodrug moieties (coumarinic acid or propionic acid). Cyclization of these linear precursors gave the cyclic prodrugs in 30-50% yields. These cyclic prodrugs exhibited excellent transcellular permeation characteristics across Caco-2 cell monolayers, an in vitro model of the intestinal mucosa. To correlate the cellular permeabilities of these cyclic prodrugs with their physicochemical properties, we calculated their Stokes-Einstein molecular radii from their diffusion coefficients which were determined by NMR and we determined their membrane interaction potentials using immobilized artificial membrane (IAM) column chromatography. The cyclic prodrugs exhibited molecular radii similar to those of the parent compounds, [Leu5]-enkephalin and DADLE. However, these cyclic prodrugs were shown to have much higher membrane interaction potentials than their corresponding opioid peptides. Therefore, the enhanced cellular permeation of the cyclic prodrugs is apparently due to the alteration of their lipophilicity and hydrogen bonding potential, but not their molecular sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号