首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A beta-D-galactosidase from bovine liver was purified to apparent homogeneity. The major purification step was affinity chromatography on a column of D-galactose attached to a Sepharose support activated with divinyl sulfone. Affinity media prepared by binding ligands to Sepharose activated with cyanogen bromide were unsuitable for purification of the enzyme, even though such media have been used to purify beta-D-galactosidases from other sources. The molecular weight of the denatured enzyme was 67,000. The molecular weight of the native enzyme at pH 7.0 was 68,000, and at pH 4.5 or 5.0, was 141,000. These data suggest that the enzyme has a single, fundamental subunit with a molecular weight of 67,000, and that the enzyme exists as a monomer at pH 7.0, and a dimer at pH 4.5 or 5.0. The Vmax values of the enzyme with p-nitrophenyl beta-D-galactoside, p-nitrophenyl beta-D-fucoside, lactose, and beta-Gal-(1----4)-beta-GlcNAc-1---- OC6H4NO2 -p were 10,204, 11,550, 9,479, and 8,859 nmol/min/mg of protein, respectively, and the Km values for these substrates were 0.08, 14.9, 14.2, and 1.6mM, respectively. D-Galactose, beta-D- galactosylamine , p-aminophenyl 1-thio-beta-D-galactoside, and D- galactono -1,4-lactone were competitive inhibitors of the enzyme, with Ki values of 0.9, 0.6, 0.6, and 0.8mM, respectively. The enzyme catalyzed the transfer of the D-galactosyl group from p-nitrophenyl beta-D-galactoside to D-glucose. The pH optimum of the enzyme was 4.5, and the pI was 4.7.  相似文献   

2.
A beta-glucosidase with cellobiase activity was purified to homogeneity from the culture filtrate of the mushroom Termtomyces clypeatus. The enzyme had optimum activity at pH 5.0 and temperature 65 degrees C and was stable up to 60 degrees C and within pH 2-10. Among the substrates tested, p-nitrophenyl-beta-D-glucopyranoside and cellobiose were hydrolysed best by the enzyme. Km and Vm values for these substrates were 0.5, 1.25 mM and 95, 91 mumol/min per mg, respectively. The enzyme had low activity towards gentiobiose, salicin and beta-methyl-D-glucoside. Glucose and cellobiose inhibited the beta-D-glucosidase (PNPGase) activity competitively with Ki of 1.7 and 1.9 mM, respectively. Molecular mass of the native enzyme was approximated to be 450 kDa by HPLC, whereas sodium dodecyl sulphate polyacrylamide gel electrophoresis indicated a molecular mass of 110 kDa. The high molecular weight enzyme protein was present both intracellularly and extracellularly from the very early growth phase. The enzyme had a pI of 4.5 and appeared to be a glycoprotein.  相似文献   

3.
The modes of action of four alpha-amylase isozymes, which were purified from human saliva, on p-nitrophenyl alpha-maltopentaoside (G5P), maltohexaitol (G6R), and their 2-pyridylamino derivatives, p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha- D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside (FG5P) and O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)- O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O- alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-D- glucitol (FG6R) were examined at various pH values. No differences in their modes of action on the substrates was found. Irrespective of which enzyme was used, the molar ratio of the hydrolysis products of G5P or G6R was almost constant at any pH examined. On the other hand, those of FG5P and FG6R varied with pH such that predominantly O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-D-glucose (FG3) was formed at high pH ranges, while the formation of O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)- O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-D-gl ucose (FG4) increased at lower pH. The result indicates that the binding mode of FG5P or FG6R to the active sites of the enzymes changed with pH; namely, interactions between the 2-pyridylamino residue of the substrates and some amino acid residue(s) located in the active sites were influenced by pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme.  相似文献   

5.
During its development the eukaryotic microorganisms Dictyostelium discoideum secretes an alpha-L-fucosidase (EC 3.2.1.51). In cells of the growth phase almost no alpha-L-fucosidase activity is detectable. The activity increases steadily up to the aggregation stage and accumulates also in the extracellular medium. The developmental regulation is mediated by pulsatile cAMP signals. The alpha-L-fucosidase was purified from extracellular medium. The isolation procedure started with concentration of the enzyme by batchwise anion-exchange chromatography and ammonium sulfate precipitation, followed by Sephacryl S-300 gel filtration and further purification by fast protein liquid chromatography on Mono Q, phenyl-Superose, and finally Superose 12. The purified preparation was found to be essentially free of activities of six other glycosidases also secreted by D. discoideum. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme showed one major band with an apparent molecular mass of 62 kilodalton. Gel filtration of the enzyme on a Superose 12 column was consistent with an active monomer. A monoclonal antibody was produced, which recognizes a carbohydrate epitope shared by all lysosomal enzymes in D. discoideum. The pH optimum of the alpha-L-fucosidase is at 3.7. The apparent Michaelis constant for p-nitrophenyl alpha-L-fucoside as substrate is 1.2 mM. The enzyme catalyzes preferentially the hydrolysis of alpha 1----6GlcNAc but also of alpha 1----2Gal and alpha 1----3Glc fucosyl linkages.  相似文献   

6.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

7.
Bacillus circulans isolated from soil was found to produce two types of alpha-L-fucosidase differing in substrate specificity. One was able to liberate L-fucose from porcine gastric mucin (PGM), but not from artificial substrates, including p-nitrophenyl and methyl alpha-L-fucosides, while the other acted not on PGM but on p-nitrophenyl alpha-L-fucoside. The production of the former enzyme was enhanced about 150 times as much by PGM added to the medium as by glucose. The alpha-L-fucosidase acting on PGM was purified from the culture fluid obtained with PGM medium by ammonium sulfate fractionation and subsequent column chromatography. The purified enzyme was found to be homogeneous by PAGE and its molecular weight was estimated to be approximately 285,000. The optimum pH was found to be 5.5 to 6.5 and the stable pH range was 4.5 to 9.0. The enzyme decomposed various blood group O(H) active substances such as PGM, human milk and human saliva, and moreover acted on A-, B-, and O-erythrocytes. The enzyme was shown to cleave alpha-(1----2)-, (1----3)-, and (1----4)-L-fucosidic linkages in various glycoproteins and oligosaccharides, but failed to hydrolyze alpha-(1----6)-L-fucosic linkages in 6-O-alpha-L-fucopyranosyl-N-acetylglucosamine and intact bovine thyroglobulin.  相似文献   

8.
An alpha-L-rhamnosidase secreting fungal strain has been isolated and identified as Aspergillus clavato-nanicus MTCC-9611. The enzyme was purified to homogeneity from the culture filtrate of the fungus using concentration by ultrafiltration membrane and ion-exchange chromatography on CM-cellulose. The native PAGE analysis confirmed the homogeneity of the purified enzyme. The SDS-PAGE analysis of the purified enzyme revealed a single protein band corresponding to the molecular weight 82 kDa. The alpha-L-rhamnosidase activity of Aspergillus clavato-nanicus MTCC-9611 had optimum at pH 10.0 and 50 degrees C. The K(m) values of the enzyme were 0.65 mM and 0.95 mM using p-nitrophenyl alpha-L-rhamnopyranoside and naringin as a substrates respectively. The enzyme transforms naringin to prunin at pH 10.0 and further hydrolysis of prunin to naringenin does not occur under these reaction conditions that makes alpha-L-rhamnosidase activity of Aspergillus clavatonanicus MTCC-9611 promising enzyme to get prunin for pharmaceutical purposes.  相似文献   

9.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

10.
Human glucuronate 2-sulphatase (GAS), which is involved in the degradation of the glycosaminoglycans heparan sulphate and chondroitin 6-sulphate, was purified almost 2,000,000-fold to homogeneity in 8% yield from liver with a four-step six-column procedure, which consists of a concanavalin A-Sepharose/Blue A-agarose coupled step, a DEAE-Sephacel/octyl-Sepharose coupled step, CM-Sepharose chromatography and gel-permeation chromatography. Although more than 90% of GAS activity had a pI of greater than 7.5, other forms with pI values of 5.8, 5.3, 4.7 and less than 4.0 were also present. The pI greater than 7.5 form of GAS had a native molecular mass of 63 kDa. SDS/polyacrylamide-gel-electrophoretic analysis resulted in two polypeptide subunits of molecular mass 47 and 19.5 kDa. GAS was active towards disaccharide substrates derived from heparin [O-(beta-glucuronic acid 2-sulphate)-(1----4)-O-(2,5)-anhydro[1-3H]mannitol 6-sulphate (GSMS)] and chondroitin 6-sulphate [O-(beta-glucuronic acid 2-sulphate-(1----3)-O-(2,5)-anhydro[1-3H]talitol 6-sulphate (GSTS)]. GAS activity towards GSMS and GSTS was at pH optima of 3.2 and 3.0 respectively with apparent Km values of 0.3 and 0.6 microM respectively and corresponding Vmax values of 12.8 and 13.7 mumol/min per mg of protein respectively. Sulphate and phosphate ions are potent inhibitors of enzyme activity. Cu2+ ions stimulated, whereas EDTA inhibited enzyme activity. It was concluded that GAS is required together with a series of other exoenzyme activities in the lysosomal degradation of glycosaminoglycans containing glucuronic acid 2-sulphate residues.  相似文献   

11.
Two types of alpha-L-fucosidase (F-I and F-II), that differ in substrate specificity, were produced in the culture fluid by Bacillus circulans isolated from soil when the bacterium was cultivated on medium containing porcine gastric mucin. F-I was able to cleave the alpha-(1----2), alpha-(1----3), and alpha-(1----4)-L-fucosidic linkages in various oligosaccharides and glycoproteins, but not p-nitrophenyl alpha-L-fucoside, as previously reported [Y. Tsuji et al. (1990) J. Biochem. 107, 324-330]. F-II was purified from the culture fluid obtained with glucose medium by ammonium sulfate fractionation and various subsequent column chromatographies. The purified enzyme was found to be homogeneous on PAGE and its molecular weight was estimated to be approximately 250,000. The maximal activity was observed between pH 6.0 to 7.0, the stable pH range being 6.0 to 8.5. The enzyme specifically cleaved alpha-L-fucosidic bonds in low molecular weight substrates. The enzyme cleaved not only p-nitrophenyl alpha-L-fucoside, but also 2-fucosyllactose and 3-fucosyllactose. The enzyme was also able to act on the alpha-(1----6)-L-fucosidic linkages to N-acetylglucosamine in 6-O-alpha-L-fucopyranosyl-N-acetylglucosamine, and bi- and tetra-antennary oligosaccharides derived from porcine pancreatic lipase, which were not hydrolyzed by F-I.  相似文献   

12.
Human liver alpha-L-fucosidase has been purified 6300-fold to apparent homogeneity with 66% yield by a two-step affinity chromatographic procedure utilizing agarose epsilon-aminocaproyl-fucosamine. Isoelectric focusing revealed that all six isoelectric forms of the enzyme were purified. Polyacrylamide gel electrophoresis of the purified alpha-L-fucosidase demonstrated the presence of six bands of protein which all contained fucosidase activity. The purified enzyme preparation was found to contain only trace amounts of seven glycosidases. Quantitative amino acid analysis was performed on the purified fucosidase. Preliminary carbohydrate analysis indicated that only about 1% of the molecule is carbohydrate. Gel filtration on Sepharose 4B indicated an approximate molecular weight for alpha-L-fucosidase of 175,000 +/- 18,000. High speed sedimentation equilibrium yielded a molecular weight of 230,000 +/- 10,000. Sodium dodecyl sulfate polyacrylamide gels indicated the presence of a single subunit of molecular weight, 50,100 +/- 2,500. The enzyme had a pH optimum of 4.6 with a suggested second optimum of 6.5. Apparent Michaelis constants and maximal velocities were determined on the purified enzyme with respect to the 4-methylumbelliferyl and the p-nitrophenyl substrates and were found to be 0.22 mM and 14.1 mumol/mg of protein/min and 0.43 mM and 19.6 mumol/mg of protein/min, respectively. Several salts had little or no effect on fucosidase activity although Ag+ and Hg2+ completely inactivated the enzyme. Antibodies made against the purified fucosidase were dound to be monospecific against crude human liver supernatant fluids and the pure antigen. No cross-reacting material was detected in the crude liver supernatant fluid from a patient who died with fucosidosis.  相似文献   

13.
A recombinant Rhizobium meliloti beta-galactosidase was purified to homogeneity from an Escherichia coli expression system. The gene for the enzyme was cloned into a pKK223-3 plasmid which was then used to transform E. coli JM109 cells. The enzyme was purified 35-fold with a yield of 34% by a combination of DEAE-cellulose (pH 8.0) and two sequential Mono Q steps (at pH 8.0 and 6.0, respectively). The purified enzyme had an apparent molecular mass of 174 kDa and a subunit molecular weight of 88 kDa, indicating that it is a dimer. It was active with both synthetic substrates p-nitrophenyl beta-D-galactopyranoside (PNPG) and o-nitrophenyl beta-D-galactopyranoside (ONPG) with K(m)(PNPG) and K(m)(ONPG) of 1 mM at 25 degrees C. The k(cat)/K(m) ratios for both substrates were approximately 70 mM(-1) sec(-1), indicating no clear preference for either PNPG or ONPG, unlike E. coli beta-galactosidase. After non-denaturing electrophoresis, active beta-galactosidase bands were identified using 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside (X-gal) or 6-bromo-2-naphthyl beta-D-galactopyranoside (BNG) and diazo blue B.  相似文献   

14.
Acetyl esterase production by Termitomyces clypeatus   总被引:1,自引:0,他引:1  
Production of acetyl esterase by Termitomyces clypeatus was stimulated by xylan, cellulose, arabinose and arabinose-containing polysaccharides in the growth medium. The culture filtrate was equally active with p-nitrophenyl acetate and acetyl xylan. Acetyl xylan was completely deacetylated by the enzyme. Activity was optimum at pH 6.5 and at 50¡C. The Km values for p-nitrophenyl acetate and acetyl xylan were 0.83 mM and 0.38% (w/v) with Vm of 48 and 55 mmole acetate produced/min.mg protein, respectively.  相似文献   

15.
Glycine aminotransferase (EC 2.6.1.4; GlyAT) was presumed to be an enzyme concerning the supply of glycine for the extracellular porphyrin production by Rhodopseudomonas palustris No. 7. GlyAT was purified from strain No. 7 as an electrophoretically homogenous protein. The enzyme was a monomer protein with the molecular weight of about 42,000. From the absorption spectrum of the enzyme (350 nm, 410 nm), it was indicated that the enzyme had pyridoxal phosphate as a prosthetic group. The enzyme showed high substrate specificity for glutamate as an amino group donor. Apparent Kms for glutamate and glyoxylate were 6.20 mM and 3.75 mM, respectively. The Vmax and Kcat for glutamate were 66.8 mumol/min/mg protein and 46.8 s-1, respectively. The Vmax and Kcat for glyoxylate were 68.8 mumol/min/mg protein and 48.2 s-1. The optimum temperature and pH were 40-45 degrees C and 7.0-7.5, respectively. The enzyme activity lowered to about 50% in the presence of 15 mM ammonium chloride.  相似文献   

16.
An esterase catalyzing the hydrolysis of acetyl ester moieties in cellulose acetate was purified 1,110-fold to electrophoretic homogeneity from the culture supernatant of Neisseria sicca SB, which can assimilate cellulose acetate as the sole carbon and energy source. The purified enzyme was a monomeric protein with a molecular mass of 40 kDa and the isoelectric point was 5.3. The pH and temperature optima of the enzyme were 8.0-8.5 and 45 degrees C. The enzyme catalyzed the hydrolysis of acetyl saccharides, p-nitrophenyl esters of short-chain fatty acids, and was slightly active toward aliphatic and aromatic esters. The K(m) and Vmax for cellulose acetate (degree of substitution, 0.88) and p-nitrophenyl acetate were 0.0162% (716 microM as acetyl content in the polymer) and 36.0 microM, and 66.8 and 39.1 mumol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate, which indicated that the enzyme was a serine esterase.  相似文献   

17.
By means of a simple procedure involving two gel filtrations and an ion-exchange chromatography, alpha-N-acetylgalactosaminidase was purified to an electrophoretically homogeneous form from skipjack liver, in which the enzyme is the dominant glycosidase. The final alpha-N-acetylgalactosaminidase preparation contained practically no other glycosidase activities except alpha-galactosidase activity, which amounted to 0.8% of the alpha-N-acetylgalactosaminidase activity and may be an intrinsic activity of the enzyme. The molecular weight of the enzyme was estimated to be 80,000 at pH 4.2 and 40,000 at pH 7.2 by molecular sieve chromatography, and to be 35,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 4 and was inactive above pH 7. These results suggest that skipjack alpha-N-acetylgalactosaminidase exists as an active dimer at acidic pH and as inactive monomer at neutral or alkaline pH. The enzyme efficiently liberated the N-acetylgalactosamine unit from ovine submaxillary glycoprotein which had been desialylated by neuraminidase. The Km value and maximum velocity were 4.28 mM and 409 mumol/min X mg for p-nitrophenyl alpha-N-acetylgalactosaminide, and 0.0543 mM and 1.19 mumol/min X mg for ovine submaxillary asialoglycoprotein.  相似文献   

18.
Purified plasma membranes of Schizosaccharomyces pombe were obtained by precipitation at pH 5.2 of a crude particulate fraction, followed by differential centrifugations and isopycnic centrifugation in a discontinuous sucrose gradient. The specific activity of the Mg2+-requiring plasma membrane ATPase activity (EC 3.6.1.3) was enriched from 0.3 mumol min-1 x mg-1 of protein in the homogenate to 26 in the purified membranes. The optimal conditions for solubilization of the ATPase activity by lysolecithin were found to be: 2 mg/ml of lysolecithin, a lysolecithin to protein ratio of 8 at pH 7.5, and 15 degrees C in the presence of 1 mM ATP and 1 mM ethylenediaminetetraacetic acid. A 6- to 7-fold purification of the solubilized ATPase activity was obtained by centrifugation of the lysolecithin extract in sucrose gradient. Part of the ATPase activity which was inactivated during the centrifugation in the sucrose gradient could be restored by addition of a micellar solution of 50 microgram of lysolecithin/ml during the assay. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the purified enzyme showed only one band of Mr = 105,000 stained with Coomassie blue. Another ATPase component of apparent molecular weight lower than 10,000 was stained by periodic Schiff reagent but not colored by Coomassie blue. The purified enzyme was 85% inhibited by 50 micrometer N,N'-dicyclohexylcarbodiimide and 94% inhibited by 53 microgram of Dio-9/ml.  相似文献   

19.
A phospholipase C which hydrolyzes [14C]phosphatidylcholine has been purified 1782-fold from 70% ammonium sulfate extract of bull seminal plasma. Purification steps included acid precipitation, chromatography on DEAE-Sephacel, concanavalin A, octyl-Sepharose 4B and Ultrogel AcA 34. The final step provided homogeneous phospholipase C as determined by polyacrylamide gel electrophoresis. The enzyme comprised two subunits, Mr 69,000 and Mr 55,000, respectively. The enzyme had an optimum at pH 7.2 and pI 5.0. EDTA, Cd2+, Pb2+, Ni2+, Fe2+, and Zn2+ inhibited phospholipase C activity. Km and Vmax on p-nitrophenyl phosphorylcholine and phosphatidylcholine substrates were 20 mM and 17 mumol/min/mg of the purified enzyme and 100 microM and 18 mumol/min/mg of the purified enzyme, respectively. The enzyme appeared to be localized in the acrosome as judged by the binding of anti-phospholipase C to the acrosome. This phospholipase C, unlike other known phospholipases (C), did not hydrolyze [1-14C]phosphatidylinositol. The testicular extract of the guinea pig contained inactive phospholipase C which was activated on incubation with acrosin and trypsin but not chymotrypsin.  相似文献   

20.
An extracecular alpha-glucosidase (alpha-D-glucoside glycohydrolase, EC 3.2.1.20) of a thermophile, Bacillus thermoglucosidius KP 1006, was purified about 350-fold. The purified enzyme had a specific activity of 164 mumol of p-nitrophenyl-alpha-D-glucopyranoside hydrolyzed per min at 60 degrees C and pH 6.8 per mg of protein. The molecular weight was estimated at 55 000. The pH and temperature optima for activity were 5.0--6.0 and 75 degrees C, respectively. Below 40 degrees C, the activity was less than 4.5% of the optimym. The enzyme showed a high specificity for alpha-D-glucopyranoside. The maximal hydrolyzing velocity per substrate diminished in the order: phenyl-alpha-D-glucopyranoside, p-nitrophenyl-alpha-D-glucopyranoside, isomaltose, methyl-alpha-glycopyranoside. The respective Km values were 3.0, 0.23, 3.2 and 27 mM. The activity was trace for turanose, and not detectable for sucrose, trehalose, raffinose, melezitose, maltose, maltotriose, phenyl-alpha-D-maltoside, dextran, dextrin and starch. Tris, p-nitrophenyl-alpha-D-xylopyranoside, glucose and glucono-delta-lactone blocked competitively the enzyme with respect to p-nitrophenyl-alpha-D-glucopyranoside. The Ki values were 0.12, 0.14, 2.2 and 2.4 mM, respectively. The activity was affected by heavy metal ions, but insensitive to EDTA, p-chloromercuribenzoate and iodoacetate. The enzyme was stable up to 60 degrees C, and inactivated rapidly at temperatures beyond 72 degrees C. The pH range for stability was 4.0--11.0 at 31 degrees C, and 6.0--8.5 at 55.5 degrees C. At 25 degrees C, the enzyme failed to be inactivated in 45% ethanol, in 7.2 M urea, and in 0.06% sodium dodecyl sulfate, but the tolerance was extremely reduced at 60 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号