首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
锌指蛋白核酸酶的作用原理及其应用   总被引:1,自引:0,他引:1  
Zhong Q  Zhao SH 《遗传》2011,33(2):123-130
锌指蛋白核酸酶(Zinc finger nucleases,ZFN)因其能特异性识别并切割DNA序列以及可设计性,被用于基因定点突变和外源基因定点整合。目前,ZFN技术以其准确的靶位点设计能力和诱发高效率基因打靶的优势,越来越受到基因改造研究者的重视,已经成功应用于动植物细胞、胚胎的基因改造。随着鉴定靶DNA高亲和力的锌指蛋白(Zinc finger protein,ZFP)实验技术日渐成熟,可以预见到不久的将来这项技术会在基因工程和育种中得到广泛应用。文章介绍了锌指蛋白识别DNA靶位点和ZFN介导的基因打靶(Double strand break gene targeting,DSB-GT)的原理,同时还综述了目前ZFN技术用于基因改造的研究进展。  相似文献   

2.
    
The induction of double-strand breaks (DSBs) in plant genomes can lead to increased homologous recombination or site-specific mutagenesis at the repair site. This phenomenon has the potential for use in gene targeting applications in plant cells upon the induction of site-specific genomic DSBs using zinc finger nucleases (ZFNs). Zinc finger nucleases are artificial restriction enzymes, custom-designed to cleave a specific DNA sequence. The tools and methods for ZFN assembly and validation could potentially boost their application for plant gene targeting. Here we report on the design of biochemical and in planta methods for the analysis of newly designed ZFNs. Cloning begins with de novo assembly of the DNA-binding regions of new ZFNs from overlapping oligonucleotides containing modified helices responsible for DNA-triplet recognition, and the fusion of the DNA-binding domain with a Fok I endonuclease domain in a dedicated plant expression cassette. Following the transfer of fully assembled ZFNs into Escherichia coli expression vectors, bacterial lysates were found to be most suitable for in vitro digestion analysis of palindromic target sequences. A set of three in planta activity assays was also developed to confirm the nucleic acid digestion activity of ZFNs in plant cells. The assays are based on the reconstruction of GUS expression following transient or stable delivery of a mutated uidA and ZFN-expressing cassettes into target plants cells. Our tools and assays offer cloning flexibility and simple assembly of tested ZFNs and their corresponding target sites into Agrobacterium tumefaciens binary plasmids, allowing efficient implementation of ZFN-validation assays in planta .  相似文献   

3.
    
Gene inactivation is an important tool for correlation of phenotypic and genomic data, allowing researchers to infer normal gene function based on the phenotype when the gene is impaired. New and better approaches are needed to overcome the shortfalls of existing methods for any significant acceleration of scientific progress. We have adapted the CRISPR/Cas system for use in Xenopus tropicalis and report on the efficient creation of mutations in the gene encoding the enzyme tyrosinase, which is responsible for oculocutaneous albinism. Biallelic mutation of this gene was detected in the F0 generation, suggesting targeting efficiencies similar to that of TALENs. We also find that off‐target mutagenesis seems to be negligible, and therefore, CRISPR/Cas may be a useful system for creating genome modifications in this important model organism. genesis 51:827–834. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Gene targeting (GT) can introduce subtle alterations into a particular locus and represents a powerful tool for genome editing. Engineered zinc finger nucleases (ZFNs) are effective for generating minor allelic alterations. Efficient detection of such minor alterations remains one of the challenges in ZFN-mediated GT experiments. Here, we report the establishment of procedures allowing for efficient detection, quantification and enrichment of such subtle alterations. In a biallelic model, polyacrylamide gel electrophoresis (PAGE) is capable of detecting rare allelic variations in the form of DNA heteroduplexes at a high efficiency of ∼0.4% compared with ∼6.3% by the traditional T7 endonuclease I-digestion and agarose gel electrophoresis. In a multiple allelic model, PAGE could discriminate different alleles bearing addition or deletion of 1–18 bp as distinct bands that were easily quantifiable by densitometry. Furthermore, PAGE enables enrichment for rare alleles. We show for the first time that direct endogenous GT is possible in medaka by ZFN RNA injection, whereas PAGE allows for detection and cloning of ZFN-targeted alleles in adults arising from ZFN-injected medaka embryos. Therefore, PAGE is effective for detection, quantification and enrichment of multiple fine allelic differences and thus offers a versatile tool for screening targeted subtle gene alterations.  相似文献   

5.
锌指核酸酶在基因组定向修饰中的应用   总被引:1,自引:0,他引:1  
同源重组和逆转录病毒介导转基因法是目前基因组修饰中常用的两种主要方法.由于这些传统方法效率低,特异性差等缺点,制约了其在研究中的应用.锌指核酸酶(zinc finger nuclease,ZFN)是一种人工合成酶,含有锌指蛋白DNA结合域和非特异性核酸酶FokI结构域. ZFN在对基因组的靶向修饰时,表现出高度特异性和高效性. 最新研究结果显示,锌指核酸酶在哺乳动物细胞和斑马鱼基因组靶向敲除的效率高达20%.这一技术的出现,将给基因组靶向修饰的研究和应用领域带来革命,特别是在基因治疗人类疾病方面有巨大的潜力和广阔的前景.  相似文献   

6.
7.
    
Genome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology. Indeed, various research groups from academia and industry are in a race to devise methods and develop tools that will enable not only site-specific mutagenesis but also controlled foreign DNA integration and replacement of native and transgene sequences by foreign DNA, in living plant cells. In recent years, much of the progress seen in gene targeting in plant cells has been attributed to the development of zinc finger nucleases and other novel restriction enzymes for use as molecular DNA scissors. The induction of double-strand breaks at specific genomic locations by zinc finger nucleases and other novel restriction enzymes results in a wide variety of genetic changes, which range from gene addition to the replacement, deletion and site-specific mutagenesis of endogenous and heterologous genes in living plant cells. In this review, we discuss the principles and tools for restriction enzyme-mediated gene targeting in plant cells, as well as their current and prospective use for gene targeting in model and crop plants.  相似文献   

8.
9.
基因修饰技术研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
基因修饰技术是用于基因组定点改造的分子工具,目前主要有锌指核酸酶(ZFN)技术、转录激活子样效应物核酸酶(TALEN)技术和CRISPR-Cas核酸酶(CRISPR-Cas)技术。这些核酸酶都可以在DNA靶位点产生双链断裂(DSB),诱发细胞内源性的修复机制,激活体内非同源末端连接(NHEJ)或同源重组(HR)两种不同的修复机制,从而实现内源基因的敲除或外源基因的定点敲入。近年来,基因修饰技术已成功应用到细菌、酵母、人类细胞、果蝇、斑马鱼、小鼠、大鼠、家畜、食蟹猴、拟南芥、水稻、烟草、玉米、高粱、小麦和大麦等多种生物,显示了其强大的基因编辑优势。特别是新近出现的CRISPR-Cas9技术,降低了成本,使基因编辑变得简洁、高效和易于操作,得到了很多研究人员的关注。本文系统介绍了以上3种技术的原理及最新研究进展,并对未来的研究和应用做出了展望。  相似文献   

10.
锌指核酸酶(zinc finger nucleases,ZFNs)由3到4个锌指结构(zinc fingers,ZFs)和FokⅠ核酸内切酶的剪切结构域组成。锌指核酸酶(ZFNs)通过锌指结构(ZFs)与特异核酸位点结合,再利用FokⅠ的酶切作用切割DNA,引起特异位点DNA双链断裂(double strand break,DSB)。DNA双链断裂可以通过非同源末端连接(non-homologous end joining,NHEJ) 或同源重组(homologous recombination,HR)来修复。在修复过程中实现对基因组DNA的靶向修饰。介绍了锌指核酸酶结构、人工构建途径,作用机理和试验步骤,重点综述了锌指核酸酶技术在植物基因工程的应用。  相似文献   

11.
12.
13.
人工锌指核酸酶介导的基因组定点修饰技术   总被引:2,自引:0,他引:2  
Xiao A  Hu YY  Wang WY  Yang ZP  Wang ZX  Huang P  Tong XJ  Zhang B  Lin S 《遗传》2011,33(7):665-683
锌指核酸酶(ZFN)由锌指蛋白(ZFP)结构域和Fok I核酸内切酶的切割结构域人工融合而成,是近年来发展起来的一种可用于基因组定点改造的分子工具。ZFN可识别并结合特定的DNA序列,并通过切割这一序列的特定位点造成DNA的双链断裂(DSB)。在此基础上,人们可以对基因组的特定位点进行各种遗传操作,包括基因打靶、基因定点插入、基因修复等,从而能够方便快捷地对基因组实现靶向遗传修饰。这种新的基因组定点修饰方法的突出优势是适用性好,对物种没有选择性,并且可以在细胞和个体水平进行遗传操作。文章综述了ZFN技术的研究进展及应用前景,重点介绍ZFN的结构与作用机制、现有的靶点评估及锌指蛋白库的构建与筛选方法、基因组定点修饰的策略,以及目前利用这一技术已成功实现突变的物种及内源基因,为开展这一领域的研究工作提供参考。  相似文献   

14.
    
Previously, we showed that ZFN‐mediated induction of double‐strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium‐mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild‐type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T‐DNA with an incomplete PPO gene, missing the 5′ coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10?3 per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10?3 per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so‐called true GT events, repaired via homologous recombination (HR) at the 5′ and the 3′ end of the gene. One plant line contained a PPO gene repaired only at the 5′ end via HR. Most plant lines contained extra randomly integrated T‐DNA copies. Two plant lines did not contain extra T‐DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion.  相似文献   

15.
动物基因敲除研究的现状与展望   总被引:10,自引:4,他引:10  
李湘萍  徐慰倬  李宁 《遗传》2003,25(1):81-88
基因打靶技术是建立在胚胎干细胞和同源重组技术之上,可对基因组进行定位修饰的实验方法,尤其可以在转基因动物的遗传性状修饰中起到巨大的作用。本文简述了转基因、体细胞克隆和基因打靶的研究历史,以及这些技术对转基因动物制备的影响和展望。  相似文献   

16.
锌指核酸酶(zinc finger nuclease,ZFN)技术是近年来发展起来的一种对基因组DNA实现靶向修饰的新技术。ZFN通过作用于基因组DNA上特异的靶位点产生DNA双链切口(double strand break,DSB),然后经过非同源末端连接(non-homologous end joining,NHEJ)或同源重组(homologous recombination,HR)途径实现对基因组DNA的靶向敲除或者替换。该技术近些年来已经被广泛应用于基因靶向修饰的研究。本文在简要介绍ZFN技术的基础上,重点综述了目前该技术在基因靶向修饰中的应用研究进展,并同时对该技术目前所需解决的一些问题以及未来的研究方向进行了分析。  相似文献   

17.
Targeted transgene integration in plants remains a significant technical challenge for both basic and applied research. Here it is reported that designed zinc finger nucleases (ZFNs) can drive site-directed DNA integration into transgenic and native gene loci. A dimer of designed 4-finger ZFNs enabled intra-chromosomal reconstitution of a disabled gfp reporter gene and site-specific transgene integration into chromosomal reporter loci following co-transformation of tobacco cell cultures with a donor construct comprised of sequences necessary to complement a non-functional pat herbicide resistance gene. In addition, a yeast-based assay was used to identify ZFNs capable of cleaving a native endochitinase gene. Agrobacterium delivery of a Ti plasmid harboring both the ZFNs and a donor DNA construct comprising a pat herbicide resistance gene cassette flanked by short stretches of homology to the endochitinase locus yielded up to 10% targeted, homology-directed transgene integration precisely into the ZFN cleavage site. Given that ZFNs can be designed to recognize a wide range of target sequences, these data point toward a novel approach for targeted gene addition, replacement and trait stacking in plants.  相似文献   

18.
锌指核酸酶、类转录激活因子式核酸酶和CRISPR/Cas技术是近几年发展起来的3种主要基因组编辑技术,其原理都是通过在生物基因组特定位点制造DNA双链断裂损伤,从而激活机体自身的DNA损伤修复机制,在此过程中引发各种变异。基因组编辑技术已在研究基因功能和基因修复中成功应用,基于基因组编辑技术的诸多优点,如CRISPR/Cas技术能对基因组中多个特定位点进行编辑,其有望成为昆虫遗传转化的主要策略。本文就锌指核酸酶、类转录激活因子式核酸酶和CRISPR/Cas技术的基本原理及其在昆虫中的应用做一简介,为今后利用基因组编辑技术进行昆虫遗传转化提供些许参考。  相似文献   

19.
    
Targeted DNA integration is commonly used to eliminate position effects on transgene expression. Integration can be targeted to specific sites in the genome via both homology‐based and homology‐independent processes. Both pathways start the integration process with a site‐specific break in the chromosome, typically from a zinc‐finger nuclease (ZFN). We previously described an efficient homology‐independent targeted integration technique that captures short (<100 bp) pieces of DNA at chromosomal breaks created by ZFNs. We show here that inclusion of a nuclease target site on the donor plasmid followed by in vivo nuclease cleavage of both the donor and the chromosome results in efficient integration of large, transgene‐sized DNA molecules into the chromosomal double‐strand break. Successful targeted integration via in vivo donor linearization is demonstrated at five distinct loci in two mammalian cell types, highlighting the generality of the approach. Finally, we show that CHO cells, a cell type recalcitrant to homology‐based integration, are proficient at capture of in vivo‐linearized transgene donors. Moreover, we demonstrate knockout of the hamster FUT8 gene via the simultaneous ZFN‐ or TALE nuclease‐mediated integration of an antibody cassette. Our results enable efficient targeted transgene addition to cells and organisms that fare poorly with traditional homology‐driven approaches. Biotechnol. Bioeng. 2013; 110: 871–880. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Summary Current methods for creating transgenic varieties are labor and time intensive, comprised of the generation of hundreds of plants with random DNA insertions, screening for the few individuals with appropriate transgene expression and simple integration structure, and followed by a lengthy breeding process to introgress the engineered trait into cultivated varieties. Various modifications of existing methods have been proposed to speed up the different steps involved in plant transformation, as well as a few add-on technologies that seek to address issues related to biosafety or intellectual property. The problem with an assortment of independently developed improvements is that they do not integrate seamlessly into a single transformation system. This paper presents an integrated strategy for plant transformation, where the introduced DNA will be inserted precisely into the genome, the transgenic locus will be introgressed rapidly into field varieties, the extraneous transgenic DNA will be removed, the transgenic plants will be molecularly tagged, and the transgenic locus may be excised from pollen and/or seed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号